Zhou Shuai, Chen Gengbiao, Gong Mingyu, Liu Jing, Xu Peng, Liu Binshuo, Yin Nian
College of Mechanical and Vehicle Engineering, Changsha University of Science and Technology, Changsha 410114, China.
International College of Engineering, Changsha University of Science and Technology, Changsha 410114, China.
Biomimetics (Basel). 2025 Jun 11;10(6):389. doi: 10.3390/biomimetics10060389.
Snake-like robots face critical challenges in energy-efficient locomotion and smooth gait transitions, limiting their real-world deployment. This study introduces a bio-inspired compliant joint design integrated with a hierarchical neural oscillator network and an energy-optimized control framework. The joint mimics biological skeletal flexibility using specialized wheeled mechanisms and adaptive parallel linkages, while the control network enables adaptive gait generation and seamless transitions through a phase-smoothing algorithm. Critically, this work adopts a synergistic design philosophy where mechanical components and control parameters are co-optimized through shared dynamic modeling. The proposed predictive control strategy optimizes locomotion speed while minimizing energy consumption. Experimental simulations demonstrate that the method achieves an 18% higher average forward speed (0.0563 m/s vs. 0.0478 m/s) with 7% lower energy use (0.1952 J vs. 0.2107 J) compared to conventional approaches. Physical prototype testing confirms these improvements under real-world conditions, showing a 12.9% speed increase (0.0531 m/s vs. 0.0470 m/s) and 7.3% energy reduction (0.2147 J vs. 0.2317 J). By unifying mechanical flexibility and adaptive control parameter tuning, this work bridges dynamic performance and energy efficiency, offering a robust solution for unstructured environments.
蛇形机器人在节能运动和流畅步态转换方面面临严峻挑战,这限制了它们在现实世界中的部署。本研究引入了一种受生物启发的柔顺关节设计,该设计集成了分层神经振荡器网络和能量优化控制框架。该关节利用专门的轮式机构和自适应平行连杆模仿生物骨骼的灵活性,而控制网络则通过相位平滑算法实现自适应步态生成和无缝转换。至关重要的是,这项工作采用了一种协同设计理念,即通过共享动态建模对机械部件和控制参数进行协同优化。所提出的预测控制策略在优化运动速度的同时将能耗降至最低。实验模拟表明,与传统方法相比,该方法的平均前进速度提高了18%(0.0563米/秒对0.0478米/秒),能耗降低了7%(0.1952焦耳对0.2107焦耳)。物理原型测试证实了在实际条件下的这些改进,显示速度提高了12.9%(0.0531米/秒对0.0470米/秒),能耗降低了7.3%(0.2147焦耳对0.2317焦耳)。通过统一机械灵活性和自适应控制参数调整,这项工作弥合了动态性能和能源效率之间的差距,为非结构化环境提供了一种强大的解决方案。