Yang Chuanyu, Pu Can, Zou Yuan, Wei Tianqi, Wang Cong, Li Zhibin
National Elite Institute of Engineering, Chongqing University, Chongqing, 401135, China.
Shenzhen Amigaga Technology Co Ltd., Shenzhen, 518000, China.
Sci Rep. 2025 Mar 24;15(1):10165. doi: 10.1038/s41598-025-94408-0.
Biological neural circuits, central pattern generators (CPGs), located at the spinal cord are the underlying mechanisms that play a crucial role in generating rhythmic locomotion patterns. In this paper, we propose a novel approach that leverages the inherent rhythmicity of CPGs to enhance the locomotion capabilities of quadruped robots. Our proposed network architecture incorporates CPGs for rhythmic pattern generation and a multi-layer perceptron (MLP) network for fusing multi-dimensional sensory feedback. In particular, we also proposed a method to reformulate CPGs into a fully-differentiable, stateless network, allowing CPGs and MLP to be jointly trained using gradient-based learning. The effectiveness and performance of our approach are demonstrated through extensive experiments. Our learned locomotion policies exhibit agile and dynamic locomotion behaviors which are capable of traversing over uneven terrain blindly and resisting external perturbations. Furthermore, results demonstrated the remarkable multi-skill capability within a single unified policy network, including fall recovery and various quadrupedal gaits. Our study highlights the advantages of integrating bio-inspired neural networks which are capable of achieving intrinsic rhythmicity and fusing sensory feedback for generating smooth, versatile, and robust locomotion behaviors, including both rhythmic and non-rhythmic locomotion skills.
生物神经回路,即位于脊髓的中枢模式发生器(CPG),是在产生有节奏的运动模式中起关键作用的潜在机制。在本文中,我们提出了一种新颖的方法,利用CPG的固有节奏性来增强四足机器人的运动能力。我们提出的网络架构包含用于产生节奏模式的CPG和用于融合多维度感官反馈的多层感知器(MLP)网络。特别地,我们还提出了一种方法,将CPG重新构建为完全可微的、无状态的网络,使得CPG和MLP能够使用基于梯度的学习进行联合训练。通过大量实验证明了我们方法的有效性和性能。我们学习到的运动策略展现出敏捷和动态的运动行为,能够盲目地穿越不平坦地形并抵抗外部干扰。此外,结果表明在单个统一的策略网络中具有显著的多技能能力,包括跌倒恢复和各种四足步态。我们的研究突出了整合受生物启发的神经网络的优势,这些网络能够实现内在节奏性并融合感官反馈,以产生平滑、通用和稳健的运动行为,包括有节奏和无节奏的运动技能。