Suppr超能文献

用于太赫兹生物传感应用的多模耦合实现宽带覆盖

Multi-Mode Coupling Enabled Broadband Coverage for Terahertz Biosensing Applications.

作者信息

Hu Dongyu, Pan Mengya, Shi Yanpeng, Zhang Yifei

机构信息

School of Integrated Circuits, Shandong University, Jinan 250100, China.

Shandong Key Laboratory of Metamaterial and Electromagnetic Manipulation Technology, Jinan 250100, China.

出版信息

Biosensors (Basel). 2025 Jun 7;15(6):368. doi: 10.3390/bios15060368.

Abstract

Terahertz (THz) biosensing faces critical challenges in balancing high sensitivity and broadband spectral coverage, particularly under miniaturized device constraints. Conventional quasi-bound states in the continuum (QBIC) metasurfaces achieve high quality factor (Q) but suffer from narrow bandwidth, while angle-scanning strategies for broadband detection require complex large-angle illumination. Here, we propose a symmetry-engineered, all-dielectric metasurface that leverages multipolar interference coupling to overcome this limitation. By introducing angular perturbation, the metasurface transforms the original magnetic dipole (MD)-dominated QBIC resonance into hybridized, multipolar modes. It arises from the interference coupling between MD, toroidal dipole (TD), and magnetic quadrupole (MQ). This mechanism induces dual counter-directional, frequency-shifted, resonance branches within angular variations below 16°, achieving simultaneous 0.42 THz broadband coverage and high Q of 499. Furthermore, a derived analytical model based on Maxwell equations and mode coupling theory rigorously validates the linear relationship between frequency splitting interval and incident angle with the Relative Root Mean Square Error (RRMSE) of 1.4% and the coefficient of determination (R2) of 0.99. This work establishes a paradigm for miniaturized THz biosensors, advancing applications in practical molecular diagnostics and multi-analyte screening.

摘要

太赫兹(THz)生物传感在平衡高灵敏度和宽带光谱覆盖方面面临严峻挑战,尤其是在小型化设备的限制条件下。传统的连续体中的准束缚态(QBIC)超表面能实现高品质因数(Q),但带宽较窄,而用于宽带检测的角度扫描策略需要复杂的大角度照明。在此,我们提出一种通过对称设计的全介质超表面,利用多极干涉耦合来克服这一限制。通过引入角度扰动,该超表面将原本以磁偶极子(MD)为主导的QBIC共振转变为杂化的多极模式。它源于MD、环形偶极子(TD)和磁四极子(MQ)之间的干涉耦合。这种机制在16°以下的角度变化范围内诱导出双方向相反、频率偏移的共振分支,实现了0.42 THz的宽带覆盖和499的高Q值。此外,基于麦克斯韦方程组和模式耦合理论推导的解析模型严格验证了频率分裂间隔与入射角之间的线性关系,相对均方根误差(RRMSE)为1.4%,决定系数(R2)为0.99。这项工作为小型化太赫兹生物传感器建立了一个范例,推动了其在实际分子诊断和多分析物筛选中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7285/12190500/1110e104811c/biosensors-15-00368-g001.jpg

相似文献

1
Multi-Mode Coupling Enabled Broadband Coverage for Terahertz Biosensing Applications.
Biosensors (Basel). 2025 Jun 7;15(6):368. doi: 10.3390/bios15060368.
2
Metasurface-enhanced terahertz imaging for glioblastoma in orthotopic xenograft mouse model combined with neural network decision making.
Biosens Bioelectron. 2025 Nov 1;287:117715. doi: 10.1016/j.bios.2025.117715. Epub 2025 Jun 25.
3
Thermally Tunable Bi-Functional Metasurface Based on InSb for Terahertz Applications.
Materials (Basel). 2025 Jun 17;18(12):2847. doi: 10.3390/ma18122847.
4
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
5
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
7
Non-invasive brain stimulation techniques for chronic pain.
Cochrane Database Syst Rev. 2018 Apr 13;4(4):CD008208. doi: 10.1002/14651858.CD008208.pub5.
8
Non-invasive brain stimulation techniques for chronic pain.
Cochrane Database Syst Rev. 2018 Mar 16;3(3):CD008208. doi: 10.1002/14651858.CD008208.pub4.
10
Quality improvement strategies for diabetes care: Effects on outcomes for adults living with diabetes.
Cochrane Database Syst Rev. 2023 May 31;5(5):CD014513. doi: 10.1002/14651858.CD014513.

本文引用的文献

1
Detection of Low-Concentration Biological Samples Based on a QBIC Terahertz Metamaterial Sensor.
Sensors (Basel). 2024 Jun 4;24(11):3649. doi: 10.3390/s24113649.
2
A Terahertz Metasurface Sensor Based on Quasi-BIC for Detection of Additives in Infant Formula.
Nanomaterials (Basel). 2024 May 19;14(10):883. doi: 10.3390/nano14100883.
3
Enhancing Multi-Spectral Fingerprint Sensing for Trace Explosive Molecules with All-Silicon Metasurfaces.
Nanomaterials (Basel). 2024 Apr 23;14(9):738. doi: 10.3390/nano14090738.
5
Metasurface-Assisted Terahertz Sensing.
Sensors (Basel). 2023 Jun 25;23(13):5902. doi: 10.3390/s23135902.
6
Ultrasensitive Terahertz Biodetection Enabled by Quasi-BIC-Based Metasensors.
Small. 2023 Aug;19(35):e2301165. doi: 10.1002/smll.202301165. Epub 2023 May 10.
8
Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range.
RSC Adv. 2020 Sep 7;10(55):33018-33025. doi: 10.1039/d0ra06463g.
9
Quo Vadis, Metasurfaces?
Nano Lett. 2021 Jul 14;21(13):5461-5474. doi: 10.1021/acs.nanolett.1c00828. Epub 2021 Jun 23.
10
Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures.
Biosens Bioelectron. 2021 Sep 15;188:113336. doi: 10.1016/j.bios.2021.113336. Epub 2021 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验