Hu Dongyu, Pan Mengya, Shi Yanpeng, Zhang Yifei
School of Integrated Circuits, Shandong University, Jinan 250100, China.
Shandong Key Laboratory of Metamaterial and Electromagnetic Manipulation Technology, Jinan 250100, China.
Biosensors (Basel). 2025 Jun 7;15(6):368. doi: 10.3390/bios15060368.
Terahertz (THz) biosensing faces critical challenges in balancing high sensitivity and broadband spectral coverage, particularly under miniaturized device constraints. Conventional quasi-bound states in the continuum (QBIC) metasurfaces achieve high quality factor (Q) but suffer from narrow bandwidth, while angle-scanning strategies for broadband detection require complex large-angle illumination. Here, we propose a symmetry-engineered, all-dielectric metasurface that leverages multipolar interference coupling to overcome this limitation. By introducing angular perturbation, the metasurface transforms the original magnetic dipole (MD)-dominated QBIC resonance into hybridized, multipolar modes. It arises from the interference coupling between MD, toroidal dipole (TD), and magnetic quadrupole (MQ). This mechanism induces dual counter-directional, frequency-shifted, resonance branches within angular variations below 16°, achieving simultaneous 0.42 THz broadband coverage and high Q of 499. Furthermore, a derived analytical model based on Maxwell equations and mode coupling theory rigorously validates the linear relationship between frequency splitting interval and incident angle with the Relative Root Mean Square Error (RRMSE) of 1.4% and the coefficient of determination (R2) of 0.99. This work establishes a paradigm for miniaturized THz biosensors, advancing applications in practical molecular diagnostics and multi-analyte screening.
太赫兹(THz)生物传感在平衡高灵敏度和宽带光谱覆盖方面面临严峻挑战,尤其是在小型化设备的限制条件下。传统的连续体中的准束缚态(QBIC)超表面能实现高品质因数(Q),但带宽较窄,而用于宽带检测的角度扫描策略需要复杂的大角度照明。在此,我们提出一种通过对称设计的全介质超表面,利用多极干涉耦合来克服这一限制。通过引入角度扰动,该超表面将原本以磁偶极子(MD)为主导的QBIC共振转变为杂化的多极模式。它源于MD、环形偶极子(TD)和磁四极子(MQ)之间的干涉耦合。这种机制在16°以下的角度变化范围内诱导出双方向相反、频率偏移的共振分支,实现了0.42 THz的宽带覆盖和499的高Q值。此外,基于麦克斯韦方程组和模式耦合理论推导的解析模型严格验证了频率分裂间隔与入射角之间的线性关系,相对均方根误差(RRMSE)为1.4%,决定系数(R2)为0.99。这项工作为小型化太赫兹生物传感器建立了一个范例,推动了其在实际分子诊断和多分析物筛选中的应用。