Roh Yeeun, Kim Kyu-Hyeon, Lee Geon, Lee Jinwoo, Kim Taeyeon, Shin Beomju, Kang Dong Min, Kim Yun Kyung, Seo Minah
Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom.
Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
Biosens Bioelectron. 2025 Nov 1;287:117715. doi: 10.1016/j.bios.2025.117715. Epub 2025 Jun 25.
Terahertz (THz) optical sensing and imaging offer significant potential in a range of biological and medical applications owing to their low-energy, non-ionizing nature, and ultra-broadband spectral information, which includes numerous molecular fingerprints. However, conventional THz imaging suffers from limited contrast and low absorption cross-section in biological tissues. Recent advances in terahertz sensing platforms, facilitated by various metasurfaces, have addressed these limitations by enhancing the sensitivity and selectivity of optical detection and imaging. This study presents an advanced label-free terahertz imaging technique that leverages a metasurface to enhance image contrast. We applied this method to image glioblastoma model mouse brain tissues. To identify cancerous regions clearly, the complex refractive indices across the brain tissues were determined using a finite element method simulation. Furthermore, the strong resonance features of the metasurface facilitate correlation-based learning in neural networks. We employed a convolutional neural network to segment cancer boundaries using the metasurface-enhanced imaging data. Glioblastoma regions were identified with an accuracy of over 99 %, by using fluorescence-labeled images as the training data for the neural networks. This study highlights the critical role of metasurfaces in fundamentally enhancing terahertz wave-matter interactions and how integration with neural networks enables highly sensitive cancer detection. This paves the way for the clinical applications of terahertz imaging technologies in medical diagnostics.
太赫兹(THz)光学传感与成像在一系列生物和医学应用中具有巨大潜力,这得益于其低能量、非电离的特性以及包含众多分子指纹的超宽带光谱信息。然而,传统太赫兹成像在生物组织中存在对比度有限和吸收截面低的问题。由各种超表面推动的太赫兹传感平台的最新进展,通过提高光学检测和成像的灵敏度和选择性解决了这些限制。本研究提出了一种先进的无标记太赫兹成像技术,该技术利用超表面来增强图像对比度。我们将此方法应用于胶质母细胞瘤模型小鼠脑组织成像。为了清晰识别癌性区域,使用有限元方法模拟确定了整个脑组织的复折射率。此外,超表面的强共振特性有助于神经网络中基于相关性的学习。我们使用卷积神经网络,利用超表面增强的成像数据来分割癌边界。通过将荧光标记图像作为神经网络的训练数据,胶质母细胞瘤区域的识别准确率超过99%。本研究强调了超表面在从根本上增强太赫兹波与物质相互作用方面的关键作用,以及与神经网络的集成如何实现高灵敏度癌症检测。这为太赫兹成像技术在医学诊断中的临床应用铺平了道路。