Suppr超能文献

甲状腺癌中的空间转录组学:应用、局限性及未来展望

Spatial Transcriptomics in Thyroid Cancer: Applications, Limitations, and Future Perspectives.

作者信息

Song Chaerim, Park Hye-Ji, Kim Man S

机构信息

Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea.

Department of Oral Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea.

出版信息

Cells. 2025 Jun 19;14(12):936. doi: 10.3390/cells14120936.

Abstract

Spatial transcriptomics (ST) is emerging as a powerful technology that transforms our understanding of thyroid cancer by offering a spatial context of gene expression within the tumor tissue. In this review, we synthesize the recent applications of ST in thyroid cancer research, with a particular focus on the heterogeneity of the tumor microenvironment, tumor evolution, and cellular interactions. Studies have leveraged the spatial information provided by ST to map distinct cell types and expression patterns of genes and pathways across the different regions of thyroid cancer samples. The spatial context also allows a closer examination of invasion and metastasis, especially through the dysregulation at the tumor leading edge. Additionally, signaling pathways are inferred at a more accurate level through the spatial proximity of ligands and receptors. We also discuss the limitations that need to be overcome, including technical limitations like low resolution and sequencing depth, the need for high-quality samples, and complex data handling processes, and suggest future directions for a wider and more efficient application of ST in advancing personalized treatment of thyroid cancer.

摘要

空间转录组学(ST)正在成为一项强大的技术,通过提供肿瘤组织内基因表达的空间背景,改变我们对甲状腺癌的理解。在这篇综述中,我们综合了ST在甲状腺癌研究中的最新应用,特别关注肿瘤微环境的异质性、肿瘤演变和细胞间相互作用。研究利用ST提供的空间信息,绘制甲状腺癌样本不同区域中不同细胞类型以及基因和信号通路的表达模式。空间背景还使得对侵袭和转移的研究更为细致,尤其是通过肿瘤前沿的失调情况。此外,通过配体和受体的空间邻近性,可以更准确地推断信号通路。我们还讨论了需要克服的局限性,包括低分辨率和测序深度等技术限制、对高质量样本的需求以及复杂的数据处理过程,并提出了未来的方向,以更广泛、更有效地应用ST推进甲状腺癌的个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a7/12191280/58e19ee7e8ec/cells-14-00936-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验