文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于可注射生物聚合物的水凝胶:微创治疗的下一代平台。

Injectable Biopolymer-Based Hydrogels: A Next-Generation Platform for Minimally Invasive Therapeutics.

作者信息

Parvin Nargish, Joo Sang Woo, Mandal Tapas Kumar

机构信息

School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

出版信息

Gels. 2025 May 23;11(6):383. doi: 10.3390/gels11060383.


DOI:10.3390/gels11060383
PMID:40558682
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12192118/
Abstract

Injectable biopolymer-based hydrogels have emerged as a powerful class of biomaterials designed for minimally invasive therapeutic strategies in modern medicine. These smart hydrogels, derived from natural biopolymers, such as alginate, chitosan, gelatin, hyaluronic acid, and collagen, offer unique advantages, including biocompatibility, biodegradability, and the ability to mimic the extracellular matrix. This review provides a comprehensive overview of recent advancements in the design, crosslinking mechanisms, and biofunctionality of injectable hydrogels tailored for targeted drug delivery and tissue regeneration. Special attention is given to their role in in situ gelling systems, cancer therapy, musculoskeletal repair, and neural regeneration. Challenges related to mechanical strength, degradation control, and clinical translation are also discussed, along with future perspectives for scalable manufacturing and regulatory approval.

摘要

基于可注射生物聚合物的水凝胶已成为一类强大的生物材料,专为现代医学中的微创治疗策略而设计。这些源自天然生物聚合物(如藻酸盐、壳聚糖、明胶、透明质酸和胶原蛋白)的智能水凝胶具有独特优势,包括生物相容性、生物可降解性以及模拟细胞外基质的能力。本综述全面概述了用于靶向药物递送和组织再生的可注射水凝胶在设计、交联机制和生物功能方面的最新进展。特别关注它们在原位凝胶系统、癌症治疗、肌肉骨骼修复和神经再生中的作用。还讨论了与机械强度、降解控制和临床转化相关的挑战,以及可扩展制造和监管批准的未来前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e41/12192118/c53b848e416b/gels-11-00383-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e41/12192118/5acc902c4928/gels-11-00383-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e41/12192118/1982444ca785/gels-11-00383-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e41/12192118/3eec39c9908f/gels-11-00383-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e41/12192118/77f5c604eda3/gels-11-00383-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e41/12192118/62bba27b82c7/gels-11-00383-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e41/12192118/c53b848e416b/gels-11-00383-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e41/12192118/5acc902c4928/gels-11-00383-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e41/12192118/1982444ca785/gels-11-00383-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e41/12192118/3eec39c9908f/gels-11-00383-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e41/12192118/77f5c604eda3/gels-11-00383-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e41/12192118/62bba27b82c7/gels-11-00383-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e41/12192118/c53b848e416b/gels-11-00383-g006.jpg

相似文献

[1]
Injectable Biopolymer-Based Hydrogels: A Next-Generation Platform for Minimally Invasive Therapeutics.

Gels. 2025-5-23

[2]
Elucidating Mechanisms of Gelation, Fiber Assembly, and Stability of Injectable Decellularized Extracellular Matrix Biomaterials.

Biopolymers. 2025-7

[3]
Injectable and self-healable supramolecular hydrogels assembled by quaternised chitosan/alginate polyelectrolyte complexation for sustained drug delivery and cell encapsulation.

Biomater Sci. 2025-6-25

[4]
Regulating inflammation microenvironment and tenogenic differentiation as sequential therapy promotes tendon healing in diabetic rats.

J Orthop Translat. 2025-6-5

[5]
Unlocking the potential of injectable hydrogels for cartilage repair.

Regen Med. 2025-5

[6]
Graphene oxide/chitosan hydrogels for removal of antibiotics.

Environ Technol. 2025-2-22

[7]
Naturally-derived injectable hydrogels for antitumor therapeutics.

Biomater Sci. 2025-6-23

[8]
Recent Progress of Biomaterial-Based Hydrogels for Wearable and Implantable Bioelectronics.

Gels. 2025-6-9

[9]
Biomaterial-driven 3D scaffolds for immune cell expansion toward personalized immunotherapy.

Acta Biomater. 2025-6-15

[10]
Chemical Strategies to Modulate and Manipulate RNA Epigenetic Modifications.

Acc Chem Res. 2025-6-3

引用本文的文献

[1]
Delivered baicalein immunomodulatory hydrogel with dual properties of pH-responsive and anti-infection orchestrates pro-regenerative response of macrophages for enhanced hypertrophic scars therapy.

Mater Today Bio. 2025-7-31

[2]
Hydrogels in Cardiac Surgery: Versatile Platforms for Tissue Repair, Adhesion Prevention, and Localized Therapeutics.

Gels. 2025-7-21

本文引用的文献

[1]
Green Hydrogels Prepared from Pectin Extracted from Orange Peels as a Potential Carrier for Dermal Delivery Systems.

ACS Omega. 2025-4-24

[2]
Injectable Brain Extracellular Matrix Hydrogels Enhance Neuronal Migration and Functional Recovery After Intracerebral Hemorrhage.

Biomater Res. 2025-4-22

[3]
Surfactant-rescued gelation: Stabilizing P123-chitosan hydrogels in blood-isotonic aqueous solutions for controlled drug delivery.

Int J Biol Macromol. 2025-5

[4]
Advances in cellulose-based hydrogels: tunable swelling dynamics and their versatile real-time applications.

RSC Adv. 2025-4-14

[5]
Cyclodextrins as multifunctional tools for advanced biomaterials in tissue repair and regeneration.

Bioact Mater. 2025-3-27

[6]
Decellularized Extracellular Matrix-Derived Hydrogels: a Powerful Class of Biomaterials for Skeletal Muscle Regenerative Engineering Applications.

Regen Eng Transl Med. 2025-3

[7]
Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control.

Gels. 2025-3-12

[8]
A Review of the Development of Biopolymer Hydrogel-Based Scaffold Materials for Drug Delivery and Tissue Engineering Applications.

Gels. 2025-3-1

[9]
Engineering functional electroconductive hydrogels for targeted therapy in myocardial infarction repair.

Bioact Mater. 2025-3-9

[10]
Hyaluronic acid as a versatile building block for the development of biofunctional hydrogels: In vitro models and preclinical innovations.

Mater Today Bio. 2025-2-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索