文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于纤维素的水凝胶的进展:可调的溶胀动力学及其多样的实时应用

Advances in cellulose-based hydrogels: tunable swelling dynamics and their versatile real-time applications.

作者信息

Rumon Md Mahamudul Hasan

机构信息

Department of Mathematics and Natural Sciences, Brac University 66 Mohakhali Dhaka 1212 Bangladesh

出版信息

RSC Adv. 2025 Apr 14;15(15):11688-11729. doi: 10.1039/d5ra00521c. eCollection 2025 Apr 9.


DOI:10.1039/d5ra00521c
PMID:40236573
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11997669/
Abstract

Cellulose-derived hydrogels have emerged as game-changing materials in biomedical research, offering an exceptional combination of water absorption capacity, mechanical resilience, and innate biocompatibility. This review explores the intricate mechanisms that drive their swelling behaviour, unravelling how molecular interactions and network architectures work synergistically to enable efficient water retention and adaptability. Their mechanical properties are explored in depth, with a focus on innovative chemical modifications and cross-linking techniques that enhance strength, elasticity, and functional versatility. The versatility of cellulose-based hydrogels shines in applications such as wound healing, precision drug delivery, and tissue engineering, where their biodegradability, biocompatibility, and adaptability meet the demands of cutting-edge healthcare solutions. By weaving together recent breakthroughs in their development and application, this review highlights their transformative potential to redefine regenerative medicine and other biomedical fields. Ultimately, it emphasizes the urgent need for continued research to unlock the untapped capabilities of these extraordinary biomaterials, paving the way for new frontiers in healthcare innovation.

摘要

纤维素衍生水凝胶已成为生物医学研究中具有变革性的材料,兼具出色的吸水能力、机械弹性和天然生物相容性。本综述探讨了驱动其溶胀行为的复杂机制,揭示了分子相互作用和网络结构如何协同作用以实现高效保水和适应性。深入研究了它们的机械性能,重点关注增强强度、弹性和功能多样性的创新化学修饰和交联技术。基于纤维素的水凝胶的多功能性在伤口愈合、精准药物递送和组织工程等应用中得以彰显,其生物可降解性、生物相容性和适应性满足了前沿医疗解决方案的需求。通过梳理其开发和应用方面的最新突破,本综述突出了它们在重新定义再生医学和其他生物医学领域方面的变革潜力。最终,强调了持续研究以释放这些非凡生物材料未开发能力的迫切需求,为医疗保健创新的新前沿铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/a1ed5814eed5/d5ra00521c-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/d75a6c39f12c/d5ra00521c-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/392363f8f0df/d5ra00521c-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/e18505dabe4d/d5ra00521c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/c2a1f88710f9/d5ra00521c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/b212e1298a9d/d5ra00521c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/7b87580d2d06/d5ra00521c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/21f0ee35ef90/d5ra00521c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/0c6ce1847100/d5ra00521c-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/f4134489fe25/d5ra00521c-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/5e76b69540ab/d5ra00521c-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/494c5223117a/d5ra00521c-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/21d5f48653aa/d5ra00521c-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/6f2030ba1bd2/d5ra00521c-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/9c3944064c9f/d5ra00521c-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/4c19770251b4/d5ra00521c-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/75433e6a300f/d5ra00521c-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/0ce10d2f22e1/d5ra00521c-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/99779ad132f5/d5ra00521c-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/a1ed5814eed5/d5ra00521c-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/d75a6c39f12c/d5ra00521c-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/392363f8f0df/d5ra00521c-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/e18505dabe4d/d5ra00521c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/c2a1f88710f9/d5ra00521c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/b212e1298a9d/d5ra00521c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/7b87580d2d06/d5ra00521c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/21f0ee35ef90/d5ra00521c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/0c6ce1847100/d5ra00521c-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/f4134489fe25/d5ra00521c-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/5e76b69540ab/d5ra00521c-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/494c5223117a/d5ra00521c-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/21d5f48653aa/d5ra00521c-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/6f2030ba1bd2/d5ra00521c-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/9c3944064c9f/d5ra00521c-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/4c19770251b4/d5ra00521c-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/75433e6a300f/d5ra00521c-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/0ce10d2f22e1/d5ra00521c-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/99779ad132f5/d5ra00521c-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772c/11997669/a1ed5814eed5/d5ra00521c-p1.jpg

相似文献

[1]
Advances in cellulose-based hydrogels: tunable swelling dynamics and their versatile real-time applications.

RSC Adv. 2025-4-14

[2]
Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control.

Gels. 2025-3-12

[3]
Exploring Applications and Preparation Techniques for Cellulose Hydrogels: A Comprehensive Review.

Gels. 2024-5-25

[4]
Chitosan-Based Gel Development: Extraction, Gelation Mechanisms, and Biomedical Applications.

Gels. 2025-4-6

[5]
Advancements, functionalization techniques, and multifunctional applications in biomedical and industrial fields of electrospun pectin nanofibers: A review.

Int J Biol Macromol. 2025-5

[6]
Unveiling the versatility of gelatin methacryloyl hydrogels: a comprehensive journey into biomedical applications.

Biomed Mater. 2024-6-3

[7]
Innovations in cellulose-based hydrogels for enhanced wastewater treatment through adsorption.

Int J Biol Macromol. 2025-4

[8]
A recent study of natural hydrogels: improving mechanical properties for biomedical applications.

Biomed Mater. 2025-3-11

[9]
Biomedical Applications of Bacterial Cellulose based Composite Hydrogels.

Curr Med Chem. 2021

[10]
Fundamental properties of smart hydrogels for tissue engineering applications: A review.

Int J Biol Macromol. 2024-1

引用本文的文献

[1]
pH-responsive release of small molecule pharmaceuticals from a reworked adsorbent hydrogel for environmental applications.

RSC Adv. 2025-8-20

[2]
Design, Synthesis, and Morphological Behavior of Polymer Gel-Based Materials for Thermoelectric Devices: Recent Progress and Perspectives.

Gels. 2025-7-1

[3]
Injectable Biopolymer-Based Hydrogels: A Next-Generation Platform for Minimally Invasive Therapeutics.

Gels. 2025-5-23

本文引用的文献

[1]
Toward Intelligent Materials with the Promise of Self-Healing Hydrogels in Flexible Devices.

Polymers (Basel). 2025-2-19

[2]
Synthesis of PVA-Based Hydrogels for Biomedical Applications: Recent Trends and Advances.

Gels. 2025-1-23

[3]
Intelligent bacteria-targeting ZIF-8 composite for fluorescence imaging-guided photodynamic therapy of drug-resistant superbug infections and burn wound healing.

Exploration (Beijing). 2024-4-19

[4]
Recent Progress on the Synthesis, Morphological Topography, and Battery Applications of Polypyrrole-Based Nanocomposites.

Polymers (Basel). 2024-11-25

[5]
Polysaccharide-Based Hydrogels for Advanced Biomedical Engineering Applications.

ACS Polym Au. 2024-8-20

[6]
Compartmentalised single-chain nanoparticles and their function.

Chem Commun (Camb). 2024-12-3

[7]
Hydrogels Based on Polyelectrolyte Complexes: Underlying Principles and Biomedical Applications.

Biomacromolecules. 2024-12-9

[8]
Self-assembled carrier-free formulations based on medicinal and food active ingredients.

Biomater Sci. 2024-12-3

[9]
Effects of hydrocolloids on the structure and physicochemical properties of triticale starch during fermentation.

Int J Biol Macromol. 2024-12

[10]
Self-healing cellulose-based hydrogels: From molecular design to multifarious applications.

Carbohydr Polym. 2025-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索