Suppr超能文献

利用基因组和生存数据进行人工智能引导的肺癌化疗优化

AI-Guided Chemotherapy Optimization in Lung Cancer Using Genomic and Survival Data.

作者信息

Moon Hojin, Nguyen Phan N, Park Jaehee, Lee Minho, Ahn Sohyul

机构信息

Department of Mathematics and Statistics, California State University, Long Beach 1250 Bellflower Blvd., Long Beach, CA 90840, USA.

Portola High School, Irvine, CA 92618, USA.

出版信息

J Pers Med. 2025 May 27;15(6):218. doi: 10.3390/jpm15060218.

Abstract

: Adjuvant chemotherapy (ACT) can improve survival outcomes for patients with early-stage non-small cell lung cancer (NSCLC), but its benefit varies significantly across individuals. Identifying patients who are likely to benefit from ACT remains a critical challenge in precision oncology. : We constructed a meta-database from two publicly available NSCLC gene expression datasets (GSE37745 and GSE29013) to address population heterogeneity. Feature selection was performed using Cox-based univariate screening with leave-one-out cross-validation. We then developed and compared three survival modeling frameworks: bagging with elastic net penalized Cox regression, Random Survival Forests (RSF), and DeepSurv neural survival networks. All models incorporated clinical covariates and selected genomic features to predict survival and recommend ACT versus observation (OBS). : Across 155 patients, RSF achieved the highest predictive performance, with a test concordance index (C-index) of0.885. Model-based recommendations were associated with improved survival in both training and test datasets, as confirmed by Kaplan-Meier analysis. Key genomic features identified included TTR, MTURN, and ETV3, suggesting their potential relevance in treatment response stratification. DeepSurv demonstrated strong predictive accuracy (C-index = 0.982) but less distinct survival curve separation compared to RSF. : Our findings demonstrate that machine learning-driven survival models, particularly RSF, can effectively identify NSCLC patients who may benefit from ACT. This approach supports data-driven, individualized chemotherapy decision-making and contributes to advancing personalized treatment strategies in early-stage NSCLC.

摘要

辅助化疗(ACT)可改善早期非小细胞肺癌(NSCLC)患者的生存结局,但其益处因个体差异显著。识别可能从ACT中获益的患者仍然是精准肿瘤学中的一项关键挑战。

我们从两个公开可用的NSCLC基因表达数据集(GSE37745和GSE29013)构建了一个元数据库,以解决人群异质性问题。使用基于Cox的单变量筛选和留一法交叉验证进行特征选择。然后,我们开发并比较了三种生存建模框架:带弹性网络惩罚Cox回归的装袋法、随机生存森林(RSF)和深度生存神经生存网络。所有模型都纳入了临床协变量和选定的基因组特征,以预测生存情况并推荐ACT与观察(OBS)。

在155例患者中,RSF具有最高的预测性能,测试一致性指数(C指数)为0.885。基于模型的推荐与训练和测试数据集中生存率的提高相关,这一点通过Kaplan-Meier分析得到证实。确定的关键基因组特征包括TTR、MTURN和ETV3,表明它们在治疗反应分层中可能具有相关性。与RSF相比,深度生存模型表现出很强的预测准确性(C指数 = 0.982),但生存曲线分离度较小。

我们的研究结果表明,机器学习驱动的生存模型,特别是RSF,可以有效地识别可能从ACT中获益的NSCLC患者。这种方法支持数据驱动的个体化化疗决策,并有助于推进早期NSCLC的个性化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b501/12194319/e5a1f6b0f80b/jpm-15-00218-g001.jpg

相似文献

1
AI-Guided Chemotherapy Optimization in Lung Cancer Using Genomic and Survival Data.
J Pers Med. 2025 May 27;15(6):218. doi: 10.3390/jpm15060218.
2
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
3
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
5
Development and validation of a Log odds of negative lymph nodes/T stage ratio-based prognostic model for gastric cancer.
Front Oncol. 2025 Jun 3;15:1554270. doi: 10.3389/fonc.2025.1554270. eCollection 2025.
6
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.
Cochrane Database Syst Rev. 2022 Sep 26;9(9):CD015048. doi: 10.1002/14651858.CD015048.pub2.
8
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.
Comput Methods Programs Biomed. 2025 Jun 21;269:108899. doi: 10.1016/j.cmpb.2025.108899.
9
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
10
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.

本文引用的文献

1
Prediction of Treatment Recommendations Via Ensemble Machine Learning Algorithms for Non-Small Cell Lung Cancer Patients in Personalized Medicine.
Cancer Inform. 2024 Oct 14;23:11769351241272397. doi: 10.1177/11769351241272397. eCollection 2024.
2
An integrative pan-cancer analysis of WWC family genes and functional validation in lung cancer.
Cell Signal. 2024 Mar;115:111034. doi: 10.1016/j.cellsig.2024.111034. Epub 2024 Jan 6.
3
Overexpression of Bruton Tyrosine Kinase Inhibits the Proliferation, Migration, and Invasion of Non-Small Cell Lung Cancer Cells.
Anal Cell Pathol (Amst). 2023 Aug 18;2023:3377316. doi: 10.1155/2023/3377316. eCollection 2023.
4
Emerging role of inositol monophosphatase in cancer.
Biomed Pharmacother. 2023 May;161:114442. doi: 10.1016/j.biopha.2023.114442. Epub 2023 Feb 24.
5
Cancer statistics, 2023.
CA Cancer J Clin. 2023 Jan;73(1):17-48. doi: 10.3322/caac.21763.
6
KBTBD7 promotes non-small cell lung carcinoma progression by enhancing ubiquitin-dependent degradation of PTEN.
Cancer Med. 2022 Dec;11(23):4544-4554. doi: 10.1002/cam4.4794. Epub 2022 May 2.
8
High Expression of lncRNA HEIH is Helpful in the Diagnosis of Non-Small Cell Lung Cancer and Predicts Poor Prognosis.
Cancer Manag Res. 2022 Feb 9;14:503-514. doi: 10.2147/CMAR.S320965. eCollection 2022.
9
Identification of a Six-Gene SLC Family Signature With Prognostic Value in Patients With Lung Adenocarcinoma.
Front Cell Dev Biol. 2021 Dec 15;9:803198. doi: 10.3389/fcell.2021.803198. eCollection 2021.
10
Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8 T cells.
Pharmacol Res. 2021 Jul;169:105656. doi: 10.1016/j.phrs.2021.105656. Epub 2021 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验