Hodgson Nicole R, Saghafian Soroush, Martini Wayne A, Feizi Arshya, Orfanoudaki Agni
Department of Emergency Medicine, Mayo Clinic Arizona, Phoenix, AZ 85054, USA.
Harvard Kennedy School, Harvard University, Cambridge, MA 02138, USA.
J Pers Med. 2025 May 27;15(6):219. doi: 10.3390/jpm15060219.
Recent advances in artificial intelligence (AI) and machine learning (ML) enable targeted optimization of emergency department (ED) operations. We examine how reworking an ED's vertical processing pathway (VPP) using AI- and ML-driven recommendations affected patient throughput. : We trained a non-linear ML model using triage data from 49,350 ED encounters to generate a personalized risk score that predicted whether an incoming patient is suitable for vertical processing. This model was integrated into a stochastic patient flow framework using queueing theory to derive an optimized VPP design. The resulting protocol prioritized a vertical assessment for patients with Emergency Severity Index (ESI) scores of 4 and 5, as well as 3 when the chief complaints involved skin, urinary, or eye issues. In periods of ED saturation, our data-driven protocol suggested that any waiting room patient should become VPP eligible. We implemented this protocol during a 13-week prospective trial and evaluated its effect on ED performance using before-and-after data. : Implementation of the optimized VPP protocol reduced the average ED length of stay (LOS) by 10.75 min (4.15%). Adjusted analyses controlling for potential confounders during the study period estimated a LOS reduction between 7.5 and 11.9 min (2.89% and 4.60%, respectively). No adverse effects were observed in the quality metrics, including 72 h ED revisit or hospitalization rates. A personalized, data-driven VPP protocol, enabled by ML predictions, significantly improved the ED throughput while preserving care quality. Unlike standard fast-track systems, this approach adapts to ED saturation and patient acuity. The methodology is customizable to patient populations and ED operational characteristics, supporting personalized patient flow optimization across diverse emergency care settings.
人工智能(AI)和机器学习(ML)的最新进展使得急诊科(ED)的运营能够实现有针对性的优化。我们研究了使用人工智能和机器学习驱动的建议对急诊科的垂直处理路径(VPP)进行重新设计如何影响患者流量。:我们使用来自49350次急诊科就诊的分诊数据训练了一个非线性机器学习模型,以生成个性化风险评分,预测即将到来的患者是否适合进行垂直处理。该模型被整合到一个使用排队论的随机患者流框架中,以得出优化的VPP设计。由此产生的方案优先对急诊严重程度指数(ESI)评分为4和5的患者进行垂直评估,当主要投诉涉及皮肤、泌尿或眼部问题时,对评分为3的患者也进行垂直评估。在急诊科饱和期间,我们的数据驱动方案建议任何候诊室患者都应符合VPP资格。我们在一项为期13周的前瞻性试验中实施了该方案,并使用前后数据评估了其对急诊科绩效的影响。:实施优化后的VPP方案使急诊科平均住院时间(LOS)减少了10.75分钟(4.15%)。在研究期间对潜在混杂因素进行控制的调整分析估计,住院时间减少了7.5至11.9分钟(分别为2.89%和4.60%)。在包括72小时急诊科复诊或住院率在内的质量指标中未观察到不良反应。由机器学习预测支持的个性化、数据驱动的VPP方案在保持护理质量的同时显著提高了急诊科的流量。与标准的快速通道系统不同,这种方法能够适应急诊科的饱和状态和患者病情严重程度。该方法可根据患者群体和急诊科运营特点进行定制,支持在不同的急诊护理环境中进行个性化的患者流优化。