Yao Chun-Wei, Lian Ian, Zhou Jiang, Bernazzani Paul, Jao Mien
Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA.
Department of Biology, Lamar University, Beaumont, TX 77710, USA.
Nanomaterials (Basel). 2025 Jun 10;15(12):898. doi: 10.3390/nano15120898.
This study investigates the elevated-temperature mechanical and viscoelastic properties of a PDMS-silica-based superhydrophobic nanocomposite coating using nanoindentation and a nano-dynamic mechanical analysis over a temperature range of 24 °C to 160 °C. The nanoindentation load-displacement curves exhibited consistent hysteresis, indicating a stable energy dissipation across the temperature range. Creep tests revealed an increased displacement and accelerated deformation at elevated temperatures, displaying a two-stage creep profile characterized by rapid primary and steady-state secondary creep. The hardness decreased with the creep time, while the strain rate sensitivity remained relatively stable, suggesting consistent deformation mechanisms. A time-dependent creep model incorporating linear and logarithmic terms accurately captured the experimental data. The nano-dynamic mechanical analysis results showed a decrease in the storage modulus with depth, while the loss modulus and tan δ peaked at shallow depths. These findings are crucial for the evaluation and design of superhydrophobic nanocomposite coatings.
本研究通过纳米压痕和纳米动态力学分析,在24℃至160℃的温度范围内研究了基于聚二甲基硅氧烷-二氧化硅的超疏水纳米复合涂层的高温力学和粘弹性性能。纳米压痕载荷-位移曲线呈现出一致的滞后现象,表明在整个温度范围内能量耗散稳定。蠕变试验表明,在高温下位移增加且变形加速,呈现出以快速的初级蠕变和稳态次级蠕变为特征的两阶段蠕变曲线。硬度随蠕变时间降低,而应变速率敏感性保持相对稳定,表明变形机制一致。一个包含线性和对数项的时间相关蠕变模型准确地拟合了实验数据。纳米动态力学分析结果表明,储能模量随深度减小,而损耗模量和损耗角正切在浅深度处达到峰值。这些发现对于超疏水纳米复合涂层的评估和设计至关重要。