Jiang Xiao, Zeng Jiaqi, Zhang Linxuan, Zhang Zhen, Zhu Rongjiao
Key Laboratory of Organic Integrated Circuits Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
Nanomaterials (Basel). 2025 Jun 13;15(12):922. doi: 10.3390/nano15120922.
Stretchable organic field-effect transistors (OFETs), with inherent flexibility, versatile sensing mechanisms, and signal amplification properties, provide a unique device-level solution for the real-time, in situ detection of trace gaseous pollutants. However, serious challenges remain regarding the synergistic optimization of OFET gas sensor production preparation, mechano-electrical properties, and gas-sensing performance. Although the introduction of microstructures can theoretically provide OFETs with enhanced sensing performance, the high-precision process required for microstructure fabrication limits scale-up. Herein, a straightforward hybrid solvent strategy is proposed for regulating the intrinsic microstructure of the organic semiconductor layer, with the aim of constructing an ultrasensitive PDVT-10/SEBS fully stretchable OFET NO sensor. The binary solvent system induces the formation of nanoneedle-like structures in the PDVT-10/SEBS organic semiconductor, which achieves a maximum mobility of 2.71 cm V s, a switching current ratio generally exceeding 10, and a decrease in mobility of only 30% at 100% strain. Specifically, the device exhibits a response of up to 77.9 × 10 % within 3 min and a sensitivity of up to 1.4 × 10 %/ppm, and it demonstrates effective interference immunity, with a response of less than 100% to nine interferences. This work paves the way for next-generation wearable smart sensors.
可拉伸有机场效应晶体管(OFET)具有固有的柔韧性、多样的传感机制和信号放大特性,为痕量气态污染物的实时原位检测提供了独特的器件级解决方案。然而,在OFET气体传感器生产制备、机电性能和气敏性能的协同优化方面仍存在严峻挑战。虽然引入微结构理论上可以提高OFET的传感性能,但微结构制造所需的高精度工艺限制了其规模扩大。在此,我们提出了一种直接的混合溶剂策略来调节有机半导体层的固有微结构,旨在构建一种超灵敏的PDVT-10/SEBS全可拉伸OFET NO传感器。二元溶剂体系诱导在PDVT-10/SEBS有机半导体中形成纳米针状结构,其实现了2.71 cm² V⁻¹ s⁻¹的最大迁移率、通常超过10的开关电流比以及在100%应变下迁移率仅下降30%。具体而言,该器件在3分钟内表现出高达77.9×10³%的响应和高达1.4×10³%/ppm的灵敏度,并且展示出有效的抗干扰能力,对九种干扰的响应小于100%。这项工作为下一代可穿戴智能传感器铺平了道路。