Li Sijie, Jiang Tongxin, Cao Yu, Zhao Wendi, San Haisheng, Li Xue, Zhang Lifeng, Li Xin
China Institute of Atomic Energy, Beijing 102413, China.
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.
Nanomaterials (Basel). 2025 Jun 14;15(12):923. doi: 10.3390/nano15120923.
The growing demand for reliable micropower sources in extreme environments has accelerated the development of betavoltaic cells (BV cells) with high energy conversion efficiency and superior radiation resistance. This study demonstrates an advanced BV cell architecture utilizing three-dimensional TiO nanorod arrays (TNRAs) integrated with a NiO hole transport layer (HTL). Monte Carlo simulations were employed to optimize the cell design and determine the fabrication parameters for growing TNRAs on FTO substrates via hydrothermal synthesis. The performance evaluation employed both electron beam (2.36 × 10 e/cm·s) and Ni (3.4 mCi/cm) irradiation methods. The simulation results revealed optimal energy deposition characteristics, with ~96% of β-particle energy effectively absorbed within the 2 μm thick FTO/TNRA/NiO/Au structure. The NiO-incorporated device achieved an energy conversion efficiency of 4.84%, with a short-circuit current of 119.9 nA, an open-circuit voltage of 324.2 mV, and a maximum power output of 24.0 nW, representing a 3.76-fold enhancement over HTL-free devices. Radioactive source testing confirmed stable power generation and linear efficiency scaling, validating electron beam irradiation as an effective accelerated testing methodology for BV cell research.
在极端环境中,对可靠微功率源的需求不断增长,这加速了具有高能量转换效率和卓越抗辐射能力的β伏特电池(BV电池)的发展。本研究展示了一种先进的BV电池结构,该结构利用了与NiO空穴传输层(HTL)集成的三维TiO纳米棒阵列(TNRA)。采用蒙特卡罗模拟来优化电池设计,并确定通过水热合成在FTO基板上生长TNRA的制造参数。性能评估采用了电子束(2.36×10 e/cm·s)和Ni(3.4 mCi/cm)辐照方法。模拟结果显示出最佳的能量沉积特性,在2μm厚的FTO/TNRA/NiO/Au结构中,约96%的β粒子能量被有效吸收。包含NiO的器件实现了4.84%的能量转换效率,短路电流为119.9 nA,开路电压为324.2 mV,最大功率输出为24.0 nW,比无HTL的器件提高了3.76倍。放射源测试证实了稳定的发电和线性效率缩放,验证了电子束辐照作为BV电池研究有效加速测试方法的有效性。