Suppr超能文献

脂多糖诱导的自闭症谱系障碍中维生素转运抑制和代谢重编程的系统假说:呼吁验证与治疗转化

A Systems Hypothesis of Lipopolysaccharide-Induced Vitamin Transport Suppression and Metabolic Reprogramming in Autism Spectrum Disorders: An Open Call for Validation and Therapeutic Translation.

作者信息

Dervishi Albion

机构信息

Anaesthesiology and Intensive Care Medicine, medius Clinic Ostfildern-Ruit-Academic Teaching Hospital of the University of Tübingen, Hedelfinger Str. 166, 73760 Ostfildern, Germany.

出版信息

Metabolites. 2025 Jun 13;15(6):399. doi: 10.3390/metabo15060399.

Abstract

Autism spectrum disorder (ASD) is increasingly linked to systemic metabolic dysfunction, potentially influenced by gut-brain axis dysregulation, but the underlying mechanisms remain unclear. We developed Personalized Metabolic Margin Mapping (PM), a computational systems biology framework, to analyze RNA-seq data from 12 ASD and 12 control postmortem brain samples. The model focused on 158 curated metabolic genes selected for their roles in redox balance, mitochondrial function, neurodevelopment, and gut-brain interactions. Using unsupervised machine learning (Isolation Forest) to detect outlier expression patterns, Euclidean distance, and percent expression difference metrics, PM revealed a consistent downregulation of glycolysis (e.g., -5.4% in PFKM) and mitochondrial enzymes (e.g., -12% in SUCLA2). By incorporating cofactor dependency and subcellular localization, PM identified a coordinated suppression of multivitamin transporters (e.g., -4.5% in SLC5A6, -3.5% in SLC19A2), potentially limiting cofactor availability and compounding energy deficits in ASD brains. These findings suggest a convergent metabolic dysregulation signature in ASD; wherein the subtle suppression of cofactor-dependent pathways may impair energy metabolism and neurodevelopment. We propose that chronic microbial lipopolysaccharide (LPS) exposure in ASD suppresses vitamin transporter function, initiating mitochondrial dysfunction and transcriptomic reprogramming. Validation in LPS-exposed systems using integrated transcriptomic-metabolomic analysis is warranted.

摘要

自闭症谱系障碍(ASD)越来越多地与全身代谢功能障碍相关联,这可能受到肠脑轴失调的影响,但其潜在机制仍不清楚。我们开发了个性化代谢边界映射(PM),这是一个计算系统生物学框架,用于分析来自12个自闭症和12个对照尸检脑样本的RNA测序数据。该模型聚焦于158个经过筛选的代谢基因,这些基因因其在氧化还原平衡、线粒体功能、神经发育和肠脑相互作用中的作用而被选中。使用无监督机器学习(孤立森林)来检测异常表达模式、欧几里得距离和表达差异百分比指标,PM揭示了糖酵解(例如,PFKM中降低5.4%)和线粒体酶(例如,SUCLA2中降低12%)的一致下调。通过纳入辅因子依赖性和亚细胞定位,PM确定了多种维生素转运蛋白的协同抑制(例如,SLC5A6中降低4.5%,SLC19A2中降低3.5%),这可能会限制辅因子的可用性,并加剧自闭症大脑中的能量不足。这些发现表明自闭症存在一种趋同的代谢失调特征;其中辅因子依赖性途径的细微抑制可能会损害能量代谢和神经发育。我们提出,自闭症患者长期暴露于微生物脂多糖(LPS)会抑制维生素转运蛋白功能,引发线粒体功能障碍和转录组重编程。有必要在暴露于LPS的系统中使用综合转录组学-代谢组学分析进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d84/12195403/b4691f180c89/metabolites-15-00399-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验