Wang Xue, Wang Fei, Iyer Archana S, Knight Heather, Duggan Lori J, Yang Yingli, Jin Liang, Cui Baoliang, He Yupeng, Schejbal Jan, Phillips Lucy A, Harvey Bohdan P, Sisó Sílvia, Tian Yu
AbbVie, South San Francisco, CA 94080, USA.
AbbVie Bioresearch Center, Worcester, MA 01605, USA.
Proteomes. 2025 May 22;13(2):17. doi: 10.3390/proteomes13020017.
Understanding the heterogeneity of Rheumatoid Arthritis (RA) and identifying therapeutic targets remain challenging using traditional bulk transcriptomics alone, as it lacks the spatial and protein-level resolution needed to fully capture disease and tissue complexities. In this study, we applied Laser Capture Microdissection (LCM) coupled with mass spectrometry-based proteomics to analyze histopathological niches of the RA synovium, enabling the identification of protein expression profiles of the diseased synovial lining and sublining microenvironments compared to their healthy counterparts. In this respect, key pathogenetic RA proteins like membrane proteins (TYROBP, AOC3, SLC16A3, TCIRG1, and NCEH1), and extracellular matrix (ECM) proteins (PLOD2, OGN, and LUM) showed different expression patterns in diseased synovium compartments. To enhance our understanding of cellular dynamics within the dissected regions, we further integrated the proteomic dataset with single-cell RNA sequencing (scRNA-seq), and deduced cell type enrichment, including T cells, fibroblasts, NK cells, myeloid cells, B cells, and synovial endothelial cells. By combining high-resolution spatial proteomics and transcriptomic analyses, we provide novel insights into the molecular mechanisms driving RA, and highlight potential protein targets for therapeutic intervention. This integrative approach offers a more comprehensive view of RA synovial pathology, and mitigates the limitations of traditional bulk transcriptomics in target discovery.
仅使用传统的全转录组学来理解类风湿性关节炎(RA)的异质性并确定治疗靶点仍然具有挑战性,因为它缺乏充分捕捉疾病和组织复杂性所需的空间和蛋白质水平分辨率。在本研究中,我们应用激光捕获显微切割(LCM)结合基于质谱的蛋白质组学来分析RA滑膜的组织病理学微环境,从而能够识别患病滑膜衬里和滑膜下层微环境与健康对应物相比的蛋白质表达谱。在这方面,关键的致病性RA蛋白,如膜蛋白(TYROBP、AOC3、SLC16A3、TCIRG1和NCEH1)以及细胞外基质(ECM)蛋白(PLOD2、OGN和LUM)在患病滑膜隔室中表现出不同的表达模式。为了增强我们对解剖区域内细胞动态的理解,我们进一步将蛋白质组数据集与单细胞RNA测序(scRNA-seq)整合,并推断出细胞类型富集情况,包括T细胞、成纤维细胞、NK细胞、髓样细胞、B细胞和滑膜内皮细胞。通过结合高分辨率空间蛋白质组学和转录组分析,我们对驱动RA的分子机制提供了新的见解,并突出了治疗干预的潜在蛋白质靶点。这种综合方法提供了对RA滑膜病理学更全面的认识,并减轻了传统全转录组学在靶点发现方面的局限性。