Suppr超能文献

药物发现与开发中空间生物学研究的最佳实践框架:利用数字空间分析实现成功的队列研究。

A best practices framework for spatial biology studies in drug discovery and development: enabling successful cohort studies using digital spatial profiling.

作者信息

Krull David, Haynes Premi, Kesarwani Anil, Tessier Julien, Chen Benjamin J, Hunter Kelly, Rodriguez Deniliz, Liang Yan, Mansfield Jim, McClain Maxine, Ramos Corinne, Bonnevie Edward, Anguiano Esperanza

机构信息

Precision Medicine, GlaxoSmithKline, Collegeville, USA.

Cancer Immunology & Cell Therapy Thematic Research Center, Bristol Myers Squibb, Seattle, WA, USA.

出版信息

J Histotechnol. 2025 Mar;48(1):7-26. doi: 10.1080/01478885.2024.2391683. Epub 2024 Sep 3.

Abstract

The discovery of biomarkers, essential for successful drug development, is often hindered by the limited availability of tissue samples, typically obtained through core needle biopsies. Standard 'omics platforms can consume significant amounts of tissue, forcing scientist to trade off spatial context for high-plex assays, such as genome-wide assays. While bulk gene expression approaches and standard single-cell transcriptomics have been valuable in defining various molecular and cellular mechanisms, they do not retain spatial context. As such, they have limited power in resolving tissue heterogeneity and cell-cell interactions. Current spatial transcriptomics platforms offer limited transcriptome coverage and have low throughput, restricting the number of samples that can be analyzed daily or even weekly. While the Digital Spatial Profiling (DSP) method does not provide single-cell resolution, it presents a significant advancement by enabling scalable whole transcriptome and ultrahigh-plex protein analysis from distinct tissue compartments and structures using a single tissue slide. These capabilities overcome significant constraints in biomarker analysis in solid tissue specimens. These advancements in tissue profiling play a crucial role in deepening our understanding of disease biology and in identifying potential therapeutic targets and biomarkers. To enhance the use of spatial biology tools in drug discovery and development, the DSP Scientific Consortium has created best practices guidelines. These guidelines, built on digital spatial profiling data and expertise, offer a practical framework for designing spatial studies and using current and future spatial biology platforms. The aim is to improve tissue analysis in all research areas supporting drug discovery and development.

摘要

生物标志物的发现对药物研发的成功至关重要,但往往受到组织样本获取有限的阻碍,这些样本通常通过芯针活检获得。标准的“组学”平台会消耗大量组织,迫使科学家在空间背景和高维度分析(如全基因组分析)之间进行权衡。虽然批量基因表达方法和标准的单细胞转录组学在定义各种分子和细胞机制方面很有价值,但它们无法保留空间背景。因此,它们在解析组织异质性和细胞间相互作用方面的能力有限。当前的空间转录组学平台提供的转录组覆盖范围有限且通量较低,限制了每天甚至每周可分析的样本数量。虽然数字空间分析(DSP)方法无法提供单细胞分辨率,但它通过使用单个组织切片从不同的组织区室和结构进行可扩展的全转录组和超高维度蛋白质分析,取得了重大进展。这些能力克服了实体组织标本中生物标志物分析的重大限制。组织分析的这些进展在加深我们对疾病生物学的理解以及识别潜在治疗靶点和生物标志物方面发挥着关键作用。为了加强空间生物学工具在药物发现和开发中的应用,DSP科学联盟制定了最佳实践指南。这些基于数字空间分析数据和专业知识的指南为设计空间研究以及使用当前和未来的空间生物学平台提供了一个实用框架。目的是改善支持药物发现和开发的所有研究领域中的组织分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验