Zapała Dariusz, Augustynowicz Paweł, Droździel Paulina, Iwanowicz Paulina
Department of Experimental Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland.
Department of Personality Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland.
Eur J Neurosci. 2025 Jun;61(12):e70159. doi: 10.1111/ejn.70159.
Motor imagery (MI) engages higher cognitive functions such as memory, attention, and the transformation of sensory information in various ways, depending on the current goal. MI can be used to reproduce in the mind a possibly exact copy of an earlier motor experience (isomorphic motor imagery [IMI]) or to transform earlier experiences into new mental representations (transmorphic motor imagery [TMI]). Our study aimed to identify electroencephalographic (EEG) patterns of brain oscillations that can distinguish these two types of MI focused on differences in the frontal midline theta (FMΘ), central parietal beta (CPβ), and sensorimotor rhythms (SMR). Twenty subjects (14F; 18-25 years) participated in the study. Experimental stimuli were generated using a haptic interface to stimulate force feedback during hand clamping. The subjects had to squeeze the interface handle, memorizing the sensations associated with this movement. Then, they mentally reproduced the action they had just performed (IMI) or imagined stronger/weaker sensations (TMI). The study findings demonstrate significant differences in FMΘ and CPβ oscillation activity when comparing IMI and TMI. The IMI condition exhibits similar brain rhythm activity to working memory, probably due to its function of reproducing a previous motor experience. In contrast, oscillation patterns during TMI resemble introspective activity typical of multimodal sensory transformations. Additionally, we observed differences in the parietal delta and theta, in line with prior research on actual movement. Results may suggest that controlling movement kinematic parameters is critical when MI replicates sensory experiences, whereas creating new representations from experiences may require less stringent control.
运动想象(MI)以各种方式参与更高层次的认知功能,如记忆、注意力以及感觉信息的转换,这取决于当前的目标。运动想象可用于在脑海中重现早期运动体验的精确副本(同构运动想象[IMI]),或把早期体验转化为新的心理表征(变形运动想象[TMI])。我们的研究旨在识别脑电活动(EEG)中大脑振荡的模式,以区分这两种类型的运动想象,重点关注额中线θ波(FMΘ)、中央顶叶β波(CPβ)和感觉运动节律(SMR)的差异。20名受试者(14名女性;年龄在18 - 25岁之间)参与了这项研究。实验刺激通过触觉界面生成,以在手部夹紧过程中刺激力反馈。受试者必须挤压界面手柄,记住与该动作相关的感觉。然后,他们在脑海中重现刚刚执行的动作(IMI)或想象更强/更弱的感觉(TMI)。研究结果表明,在比较IMI和TMI时,FMΘ和CPβ振荡活动存在显著差异。IMI状态表现出与工作记忆相似的脑节律活动,这可能是由于其重现先前运动体验的功能。相比之下,TMI期间的振荡模式类似于多模态感觉转换中典型的内省活动。此外,我们观察到顶叶δ波和θ波的差异,这与先前关于实际运动的研究一致。结果可能表明,当运动想象复制感觉体验时,控制运动运动学参数至关重要,而从体验中创建新表征可能需要较宽松的控制。