Suppr超能文献

利用(生物)力学传感器融合增强智能假肢膝关节的运动模式识别与转换预测

Enhancing Locomotion-Mode Recognition and Transition Prediction with (Bio)Mechanical Sensor Fusion for Intelligent Prosthetic Knees.

作者信息

Wang Xiaoming, Bai Shaoping, Li Linrong, Li Yuanhua, Yu Hongliu

出版信息

IEEE J Biomed Health Inform. 2025 Jun 25;PP. doi: 10.1109/JBHI.2025.3583319.

Abstract

The ability to continuously recognize locomotion modes and accurately predict transition intentions is essential for intelligent prosthetic knees. In this study, an innovative framework for locomotion recognition and transition prediction was introduced based on fusing mechanical (inertial measurement unit (IMU)) and biomechanical (force myography (FMG)) signals. This framework integrated an FMG-IMU dual-modal sensing system implemented on a prosthetic knee, enabling simultaneous acquisition of FMG-IMU fusion signals from transfemoral amputees during dynamic walking. A novel feature-driven CNN-BiLSTM model was developed and trained as the classifier, enhancing the accuracy and efficiency of locomotion mode prediction. The RelifF-MI algorithm was employed to optimize FMG-IMU features, ensuring efficient data processing by effectively eliminating feature redundancy. The framework was evaluated using data collected from eight transfemoral amputees. The results demonstrated that the fusion of FMG-IMU dual-modal gait data with the feature-driven classifier significantly improved classification performance, achieving an overall average recognition accuracy of 98.51% and an average prediction time of 274 ms (21.82% of the gait cycle) across five locomotion modes-level walking (LW), stair ascent/descent (SA/SD), and ramp ascent/descent (RA/RD)-and eight transitions between these modes. These promising results highlighted the considerable potential of the proposed method for application in prosthetic knee control.

摘要

对于智能假肢膝关节而言,持续识别运动模式并准确预测转换意图的能力至关重要。在本研究中,基于融合机械(惯性测量单元(IMU))和生物力学(肌电描记法(FMG))信号,引入了一种用于运动识别和转换预测的创新框架。该框架集成了一个在假肢膝关节上实现的FMG-IMU双模态传感系统,能够在动态行走过程中同时采集来自经股骨截肢者的FMG-IMU融合信号。开发并训练了一种新颖的特征驱动CNN-BiLSTM模型作为分类器,提高了运动模式预测的准确性和效率。采用RelifF-MI算法优化FMG-IMU特征,通过有效消除特征冗余确保高效的数据处理。使用从八名经股骨截肢者收集的数据对该框架进行了评估。结果表明,FMG-IMU双模态步态数据与特征驱动分类器的融合显著提高了分类性能,在五种运动模式——水平行走(LW)、上楼梯/下楼梯(SA/SD)以及上斜坡/下斜坡(RA/RD)——以及这些模式之间的八种转换中,总体平均识别准确率达到98.51%,平均预测时间为274毫秒(占步态周期的21.82%)。这些有前景的结果凸显了所提出方法在假肢膝关节控制应用中的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验