Zhang Xin, Li Feng, Hobbelen Hans Sm, van Munster Barbara C, Lamoth Claudine Jc
University of Groningen, University Medical Center Groningen, Department of Human Movement Sciences, 9713AV Groningen, the Netherlands; Jilin University, School of Nursing, 965 Xinjiang Street, Changchun, China.
Jilin University, School of Nursing, 965 Xinjiang Street, Changchun, China.
J Nutr Health Aging. 2025 May 14;29(7):100580. doi: 10.1016/j.jnha.2025.100580.
OBJECTIVE: This scoping review aimed to gather current knowledge on accurately identifying and distinguishing between non-frail, pre-frail, and frail older adults using gait and daily physical activity (DPA) parameters and/or models that combine gait with DPA parameters in both controlled and daily life environments. METHODS: Following PRISMA-ScR guidelines, a systematic search was conducted across seven databases using key terms: "frail", "gait or walk", "IMU", and "age". Studies were included if they focused on gait analysis using Inertial Measurement Units (IMUs) for walking distances greater than 10 meters. Extracted data included study design, gait and DPA outcomes, walking conditions, and classification model performance. Gait parameters were grouped into four domains: spatio-temporal, frequency, amplitude, and dynamic gait. DPA parameters were synthesized into three categories: postural and transition, variability, and physical activity pattern. RESULTS: A total of 15 cross-sectional studies involving 2,366 participants met the inclusion criteria. Gait analysis showed (pre)frail individuals had slower, shorter steps with longer stride times compared to non-frail individuals. Pre-frail individuals showed distinct gait patterns in periodicity, magnitude range, and variability. In daily activities, (pre)frail individuals displayed shorter, fragmented walking periods and longer transitions between positions. Walking variation identified pre-frail status, showing progressive decreases from non-frail to frail states. Combined gait and daily physical activity models achieved over 97% accuracy, sensitivity and specificity in distinguishing between groups. DISCUSSION: This review provides an updated synthesis of the relationship between various gait and/or DPA parameters and physical frailty, highlighting gaps in pre-frailty detection and the variability in measurement protocols. It underscores the potential of long-term, sensor-based monitoring of daily physical activity for advancing pre-frailty screening and guiding future clinical trials. Structured Abstract BACKGROUND: Changes in gait and physical activity are critical indicators of frailty. With advancements in wearable sensor technology, long-term gait analysis using acceleration data has become more feasible. However, the contribution of parameters beyond gait speed, such as gait dynamics and daily physical activity (DPA), in identifying frail and pre-frail individuals remains unclear. OBJECTIVE: This scoping review aimed to gather knowledge on accurately identifying and differentiating physical pre-frail and frail individuals from non-frail individuals using gait parameters alone or models that combine gait and DPA parameters, both in controlled settings and daily life environments. METHODS: The review followed PRISMA-ScR guidelines. A search strategy incorporating key terms-"frail", "gait or walk", "IMU", and "age"-was applied across seven databases from inception to March 1, 2024. Studies were included if they focused on gait analysis in controlled or daily environments using Inertial Measurement Units (IMUs) and involved walking distances longer than 10 meters. Data on walking conditions, gait outcomes, classification methods, and results were extracted. Gait parameters were categorized into four domains: spatio-temporal, frequency, amplitude, and dynamic gait. DPA parameters were synthesized into three categories: postural and transition, variability, physical activity pattern. RESULTS: A total of 15 cross-sectional observational studies met the eligibility criteria, covering 2,366 participants, with females representing 27%-80% of the sample and ages ranging from 60 to 92 years. Regarding gait parameters, (pre)frail individuals exhibited longer stride times, slower walking speeds, shorter steps, and reduced cadence compared to non-frail individuals. In three studies, pre-frail could be distinguished from the non-frail and frail group through gait periodicity, range of magnitude, and gait variability. DPA patterns differed between groups, with (pre)frail individuals showing shorter and more fragmented walking periods, brief walking bouts and longer postural transitions. Walking bout variation (CoV) effectively identified pre-frail status, decreasing 53.73% from non-frail to pre-frail, and another 30.87% from pre-frail to frail. Models combining both gait and DPA parameters achieved the highest accuracy (97.25%), sensitivity (98.25%), and specificity (98.25%) in distinguishing between groups. DISCUSSION: This scoping review provides an updated overview of the current knowledge and gaps in understanding the relationship between gait parameters across different domains and DPA parameters along with physical frailty. Significant variability in gait measurement methods and protocols complicates direct comparisons between studies. The review emphasizes the need for further research, particularly in pre-frailty screening, and underscores the potential of inertial sensor-based long-term monitoring of daily physical activity for future clinical trials.
目的:本综述旨在收集当前关于在受控环境和日常生活环境中,使用步态和日常身体活动(DPA)参数及/或结合步态与DPA参数的模型,准确识别和区分非虚弱、虚弱前期和虚弱老年人的知识。 方法:遵循PRISMA - ScR指南,在七个数据库中进行系统检索,使用关键词:“虚弱”、“步态或行走”、“惯性测量单元(IMU)”和“年龄”。如果研究聚焦于使用惯性测量单元(IMU)对大于10米的行走距离进行步态分析,则纳入研究。提取的数据包括研究设计、步态和DPA结果、行走条件以及分类模型性能。步态参数分为四个领域:时空、频率、幅度和动态步态。DPA参数综合为三类:姿势和过渡、变异性以及身体活动模式。 结果:共有15项横断面研究涉及2366名参与者,符合纳入标准。步态分析显示,与非虚弱个体相比,(虚弱前期)虚弱个体步速更慢、步幅更短、步幅时间更长。虚弱前期个体在周期性、幅度范围和变异性方面表现出独特的步态模式。在日常活动中,(虚弱前期)虚弱个体的行走时间更短、更碎片化,姿势转换时间更长。行走变异性可识别虚弱前期状态,从非虚弱到虚弱前期状态逐渐降低。结合步态和日常身体活动的模型在区分不同组时,准确率、敏感性和特异性均超过97%。 讨论:本综述提供了各种步态和/或DPA参数与身体虚弱之间关系的最新综合信息,突出了虚弱前期检测方面的差距以及测量方案的变异性。强调了基于传感器的日常身体活动长期监测在推进虚弱前期筛查和指导未来临床试验方面的潜力。结构化摘要背景:步态和身体活动的变化是虚弱的关键指标。随着可穿戴传感器技术的进步,利用加速度数据进行长期步态分析变得更加可行。然而,除步态速度之外的参数,如步态动力学和日常身体活动(DPA),在识别虚弱和虚弱前期个体中的作用仍不明确。 目的:本综述旨在收集关于在受控环境和日常生活环境中,单独使用步态参数或结合步态与DPA参数的模型,准确识别和区分身体虚弱前期和虚弱个体与非虚弱个体的知识。 方法:本综述遵循PRISMA - ScR指南。从数据库建立至2024年3月1日,在七个数据库中应用包含关键词“虚弱”、“步态或行走”、“IMU”和“年龄”的检索策略。如果研究聚焦于在受控或日常环境中使用惯性测量单元(IMU)进行步态分析,且行走距离超过10米,则纳入研究。提取关于行走条件、步态结果、分类方法和结果的数据。步态参数分为四个领域:时空、频率、幅度和动态步态。DPA参数综合为三类:姿势和过渡、变异性、身体活动模式。 结果:共有15项横断面观察性研究符合纳入标准,涵盖2366名参与者,女性占样本的27% - 80%,年龄范围为60至92岁。关于步态参数,与非虚弱个体相比,(虚弱前期)虚弱个体的步幅时间更长、行走速度更慢、步幅更短且步频降低。在三项研究中,虚弱前期个体可通过步态周期性、幅度范围和步态变异性与非虚弱和虚弱组区分开来。不同组之间的DPA模式存在差异,(虚弱前期)虚弱个体的行走时间更短且更碎片化,行走时段短暂且姿势转换时间更长。行走时段变异性(变异系数)有效识别了虚弱前期状态,从非虚弱到虚弱前期降低了53.73%,从虚弱前期到虚弱又降低了30.87%。结合步态和DPA参数的模型在区分不同组时,准确率(97.25%)最高,敏感性(98.25%)和特异性(98.25%)也最高。 讨论:本综述提供了关于当前知识以及理解不同领域步态参数与DPA参数以及身体虚弱之间关系的差距的最新概述。步态测量方法和方案的显著变异性使研究之间的直接比较变得复杂。该综述强调了进一步研究的必要性,特别是在虚弱前期筛查方面,并强调了基于惯性传感器的日常身体活动长期监测在未来临床试验中的潜力。
Cochrane Database Syst Rev. 2022-5-20
Health Technol Assess. 2001
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2018-1-16
Cochrane Database Syst Rev. 2016-3-31
Int J Environ Res Public Health. 2023-5-30
BMC Geriatr. 2022-9-13