Suppr超能文献

用于细胞核实例分割与分类的视觉语言模型激励

Prompting Vision-Language Model for Nuclei Instance Segmentation and Classification.

作者信息

Yao Jieru, Guo Guangyu, Zheng Zhaohui, Xie Qiang, Han Longfei, Zhang Dingwen, Han Junwei

出版信息

IEEE Trans Med Imaging. 2025 Jun 25;PP. doi: 10.1109/TMI.2025.3579214.

Abstract

Nuclei instance segmentation and classification are a fundamental and challenging task in whole slide Imaging (WSI) analysis. Most dense nuclei prediction studies rely heavily on crowd labelled data on high-resolution digital images, leading to a time-consuming and expertise-required paradigm. Recently, Vision-Language Models (VLMs) have been intensively investigated, which learn rich cross-modal correlation from large-scale image-text pairs without tedious annotations. Inspired by this, we build a novel framework, called PromptNu, aiming at infusing abundant nuclei knowledge into the training of the nuclei instance recognition model through vision-language contrastive learning and prompt engineering techniques. Specifically, our approach starts with the creation of multifaceted prompts that integrate comprehensive nuclear knowledge, including visual insights from the GPT-4V model, statistical analyses, and expert insights from the pathology field. Then, we propose a novel prompting methodology that consists of two pivotal vision-language contrastive learning components: the Prompting Nuclei Representation Learning (PNuRL) and the Prompting Nuclei Dense Prediction (PNuDP), which adeptly integrates the expertise embedded in pre-trained VLMs and multi-faceted prompts into the feature extraction and prediction process, respectively. Comprehensive experiments on six datasets with extensive WSI scenarios demonstrate the effectiveness of our method for both nuclei instance segmentation and classification tasks. The code is available at https://github.com/NucleiDet/PromptNu.

摘要

细胞核实例分割与分类是全切片成像(WSI)分析中的一项基础且具有挑战性的任务。大多数密集细胞核预测研究严重依赖于高分辨率数字图像上的众包标注数据,导致形成一种耗时且需要专业知识的范式。最近,视觉语言模型(VLM)受到了深入研究,它能从大规模图像 - 文本对中学习丰富的跨模态相关性,而无需繁琐的标注。受此启发,我们构建了一个名为PromptNu的新颖框架,旨在通过视觉语言对比学习和提示工程技术,将丰富的细胞核知识融入到细胞核实例识别模型的训练中。具体而言,我们的方法首先创建多方面的提示,这些提示整合了全面的细胞核知识,包括来自GPT - 4V模型的视觉见解、统计分析以及病理学领域的专家见解。然后,我们提出了一种新颖的提示方法,该方法由两个关键的视觉语言对比学习组件组成:提示细胞核表示学习(PNuRL)和提示细胞核密集预测(PNuDP),它们分别巧妙地将预训练VLM中嵌入的专业知识和多方面提示整合到特征提取和预测过程中。在六个具有广泛WSI场景的数据集上进行的综合实验证明了我们的方法在细胞核实例分割和分类任务中的有效性。代码可在https://github.com/NucleiDet/PromptNu获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验