Suppr超能文献

基于多源数据,使用奇异谱分析-极端梯度提升算法进行人口预测建模以实现智能人口管理。

Demographic forecast modelling using SSA-XGBoost for smart population management based on multi-sources data.

作者信息

Wang Jin, Ma Shihan, Lv Qing, Li Qiang

机构信息

College of Engineering of Hebei Normal University, Shijiazhuang, China.

Hebei Provincial Key Laboratory of Information Fusion and Intelligent Control, Shijiazhuang, China.

出版信息

PLoS One. 2025 Jun 25;20(6):e0320298. doi: 10.1371/journal.pone.0320298. eCollection 2025.

Abstract

Population prediction could provide effective data support for social and economic planning and decision-making, especially for the sub-national population forecasting accurately. In addition to realizing efficient smart population management, this research focuses primarily on the combination model for forecasting demographic data based on machine learning. As to the higher error of population forecasts due to high population density and mobility, a dynamic monitoring method based on mobile communication big data such as mobile phone signals is proposed, combined with more structurally stable traditional statistical data, it forms a multi-source dataset that possesses both accuracy and real-time characteristics. In the study, the Extreme Gradient Boosting tree (XGBoost) model is used to identify the base model to create a reliable predictive model for population dynamic monitoring. The sparrow search algorithm (SSA) is investigated to obtain more reasonable parameters of XGBoost to improve forecast accuracy. The combination model is verified based on the data of the 6th and 7th national population census and mobile phone signal data in Hebei Province, obtained the predicted data for mortality and migration, categorized by age and gender, for the following year. Subsequently, the research compared the performance of different metaheuristic algorithms and various gradient-boosting machine-learning models on the dataset. The SSA-XGBoost model demonstrates a better prediction performance in the demographic data forecast with better R2 0.9984 and a lower mean absolute error of 0.0002 and a mean squared error of 6.9184. The results of the comparative experiments and cross-validation show that the proposed predictive model can effectively forecast the demographic data for sub-national regions to realize smart population management.

摘要

人口预测可以为社会经济规划和决策提供有效的数据支持,特别是对于准确的次国家级人口预测。除了实现高效的智能人口管理外,本研究主要关注基于机器学习的人口数据预测组合模型。针对由于人口高密度和高流动性导致的人口预测误差较大的问题,提出了一种基于手机信号等移动通信大数据的动态监测方法,并结合结构更稳定的传统统计数据,形成了一个兼具准确性和实时性的多源数据集。在研究中,使用极端梯度提升树(XGBoost)模型来确定基础模型,以创建一个可靠的人口动态监测预测模型。研究了麻雀搜索算法(SSA)以获得更合理的XGBoost参数,从而提高预测准确性。基于第六次和第七次全国人口普查数据以及河北省的手机信号数据对组合模型进行了验证,得到了按年龄和性别分类的下一年死亡率和迁移率的预测数据。随后,研究比较了不同元启发式算法和各种梯度提升机器学习模型在该数据集上的性能。SSA-XGBoost模型在人口数据预测中表现出更好的预测性能,R2为高达0.9984,平均绝对误差较低,为0.0002,均方误差为6.9184。对比实验和交叉验证的结果表明,所提出的预测模型能够有效地预测次国家级地区的人口数据,以实现智能人口管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2220/12193076/c71b966e873e/pone.0320298.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验