Suppr超能文献

幼龄动物黏膜免疫反应和生长效率的贝叶斯层次模型:证明数据依赖型经验先验的优越性。

Bayesian hierarchical modeling of mucosal immune responses and growth efficiency in young animals: Demonstrating the superiority of data-dependent empirical priors.

作者信息

Chatterjee Debashis, Ghosh Prithwish

机构信息

Department of Statistics, Visva Bharati, Santiniketan, India.

Department of Statistics, North Carolina State University, Raleigh, North Carolina, United States of America.

出版信息

PLoS One. 2025 Jun 25;20(6):e0326273. doi: 10.1371/journal.pone.0326273. eCollection 2025.

Abstract

The transition from milk to solid food during the weaning period exposes young animals to significant dietary and environmental stressors, which can profoundly affect mucosal immune responses and overall growth efficiency. This paper introduces a novel Bayesian hierarchical model to comprehensively assess the complex interactions between diet, environmental factors, intestinal microbiota, and immune markers in young animals' small intestines. The model integrates data at both individual and group levels, providing a robust framework to understand how these stressors influence immune responses and growth outcomes. This hierarchical Bayesian approach captures individual variability and group-level effects by employing sophisticated interaction terms and data-dependent empirical priors, offering high-resolution uncertainty quantification. The model's novelty lies in its ability to synthesize multiple sources of variability, offering insights that are not achievable through traditional statistical models.

摘要

断奶期从奶类过渡到固体食物会使幼龄动物面临重大的饮食和环境应激源,这可能会深刻影响黏膜免疫反应和整体生长效率。本文介绍了一种新颖的贝叶斯分层模型,以全面评估幼龄动物小肠中饮食、环境因素、肠道微生物群和免疫标志物之间的复杂相互作用。该模型整合了个体和群体层面的数据,提供了一个强大的框架来理解这些应激源如何影响免疫反应和生长结果。这种分层贝叶斯方法通过采用复杂的交互项和数据依赖的经验先验来捕捉个体变异性和群体层面的效应,提供高分辨率的不确定性量化。该模型的新颖之处在于它能够综合多种变异性来源,提供传统统计模型无法获得的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413d/12193854/3569b120cd34/pone.0326273.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验