Chen Jiayin, Jiang Xueao, Xu Yang, Zeng Junfeng, Zhang Jun, Wu Xuansheng, Liu Weijian, Chen Zhengjian, Zhang Yan, Wang Xiwen, Zhang Shiguo
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan, China.
Criminal Investigation Police University of China, Shenyang 110031, China.
ACS Appl Mater Interfaces. 2025 Jul 9;17(27):39191-39203. doi: 10.1021/acsami.5c07963. Epub 2025 Jun 25.
The ionogel polymer electrolyte (IGPE) has emerged as a promising polymer electrolyte for lithium metal batteries (LMBs) due to its high safety and a wide electrochemical window. To achieve an energy density comparable to that of liquid electrolyte (LEs)-based cells, ultrathin IGPE electrolytes with high Li conductance are desired. However, their development still suffers from intrinsically poor mechanical stability and the low Li transference number () of IGPEs. Here, we design a 12 μm-thick, mechanically reliable, and highly Li conductive IGPE electrolyte (PET-IGPE) by incorporating a poly(butyl acrylate) (PBA)/solvate ionic liquid (SIL)-based ionogel with a polyethylene terephthalate (PET) track-etched membrane. The PET membrane as the scaffold enables the resultant IGPE electrolyte to have a high tensile strength of 65 MPa and a puncture strength of >340 gf mil, preventing the Li symmetrical cell from short-circuiting for over 700 h of cycling. Meanwhile, the vertically aligned pores in the PET membrane function as the directional Li motion pathway, which enables an ultrahigh areal ionic conductance of 308.3 mS cm, improves to 0.61, and steady Li plating/stripping without impairing the thermal and electrochemical oxidative stability of IGPEs. As a result, the Li|12PET-IGPE|LiFePO cell shows high capacity, high cycling stability in a wide temperature range of 25-90 °C, and high tolerance to abuse, such as folding, cutting, or nail penetration.
离子凝胶聚合物电解质(IGPE)因其高安全性和宽电化学窗口,已成为锂金属电池(LMB)中一种很有前景的聚合物电解质。为了实现与基于液体电解质(LE)的电池相当的能量密度,需要具有高锂电导率的超薄IGPE电解质。然而,它们的发展仍然受到IGPE本质上较差的机械稳定性和低锂迁移数(tLi+)的困扰。在此,我们通过将聚(丙烯酸丁酯)(PBA)/溶剂化离子液体(SIL)基离子凝胶与聚对苯二甲酸乙二酯(PET)径迹蚀刻膜相结合,设计了一种厚度为12μm、机械性能可靠且具有高锂导电性的IGPE电解质(PET-IGPE)。作为支架的PET膜使所得的IGPE电解质具有65MPa的高拉伸强度和>340gf mil的穿刺强度,可防止锂对称电池在超过700小时的循环中短路。同时,PET膜中垂直排列的孔作为锂定向移动的通道,实现了308.3mS cm的超高面积离子电导率,将tLi+提高到0.61,并实现稳定的锂电镀/剥离,而不会损害IGPE的热稳定性和电化学氧化稳定性。结果,Li|12PET-IGPE|LiFePO4电池在25-90°C的宽温度范围内表现出高容量、高循环稳定性以及对折叠、切割或钉子穿刺等滥用情况的高耐受性。