Xia Shuixin, Zhang Xiangfeng, Jiang Zongyan, Wu Xiaoyan, Yuwono Jodie A, Li Chenrui, Wang Cheng, Liang Gemeng, Li Mingnan, Zhang Fangli, Yu Yi, Jiang Yong, Mao Jianfeng, Zheng Shiyou, Guo Zaiping
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.
School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.
Adv Mater. 2025 Jun 27:e2510376. doi: 10.1002/adma.202510376.
Ultrathin solid-polymer-electrolytes (SPEs) are the most promising alternative substituting for the conventional liquid electrolyte to enable high-energy-density, safe lithium-metal-batteries (LMBs). Nevertheless, developing ultrathin SPEs with both high ionic conductivity, and strong Li dendrite retardant is still a significant challenge. Here a scalable fabrication of high-performance ultrathin (≈7.8 µm) polycarbonate-based electrolyte (UPCE) is proposed via electrolyte structural engineering, phase separation-derived poly(vinylidene fluoride-co-hexafluoropropylene) (PVH) porous scaffold, without use of additional liquid additives. The rational electrolyte structural modulation with 1-fluoro-4-(1-methylethenyl)benzene (FMB) enables a weakened Li-polymer interaction due to weak Li solvation with fluorine, benzene ring, facilitates the formation of LiF-rich solid-electrolyte-interphase on Li metal surface. As a result, the designed UPCE delivers a high ionic conductivity of 4.8 × 10 S cm, an ultrahigh critical current density of 11.5 mA cm at 25 °C. The solid-state Li symmetric cell attains unprecedented ultralong cycling over 6000 h at 0.5 mA cm. Furthermore, the Li|LiCoO cell cycles stably over 1500 cycles at a high operating voltage of 4.5 V, and the pouch cell can achieve a high energy density of 495 Wh kg excluding the packaging. This work offers a new pathway inspiring efforts to commercialize ultrathin SPEs for high-energy solid-state LMBs.
超薄固体聚合物电解质(SPEs)是替代传统液体电解质以实现高能量密度、安全锂金属电池(LMBs)的最具前景的选择。然而,开发兼具高离子电导率和强锂枝晶抑制能力的超薄SPEs仍然是一项重大挑战。本文通过电解质结构工程,即相分离衍生的聚(偏二氟乙烯 - 共 - 六氟丙烯)(PVH)多孔支架,提出了一种可扩展的制备高性能超薄(约7.8 µm)聚碳酸酯基电解质(UPCE)的方法,无需使用额外的液体添加剂。用1 - 氟 - 4 - (1 - 甲基乙烯基)苯(FMB)进行合理的电解质结构调制,由于氟、苯环对锂的弱溶剂化作用,使得锂 - 聚合物相互作用减弱,有利于在锂金属表面形成富含LiF的固体电解质界面。结果,所设计的UPCE在25°C下具有4.8×10 S cm的高离子电导率和11.5 mA cm的超高临界电流密度。固态锂对称电池在0.5 mA cm下实现了超过6000 h的前所未有的超长循环。此外,Li|LiCoO电池在4.5 V的高工作电压下稳定循环超过1500次,软包电池在不包括包装的情况下可实现495 Wh kg的高能量密度。这项工作为推动超薄SPEs用于高能量固态LMBs的商业化提供了一条新途径。