Elsarta Ahmed, Fathalla Habiba, Nasser Marina, Elwatany Sara, Fekry Rawan, Ebaid Mohamed, Mahmoud Yomna, Anwar Ayman, Gaber Amira
Department of Systems and Biomedical Engineering, Faculty of Engineering, Cairo University, Giza, Canada.
Department of Plastic Surgery, Faculty of Medicine, Cairo University, Giza, Egypt.
Comput Biol Med. 2025 Sep;195:110556. doi: 10.1016/j.compbiomed.2025.110556. Epub 2025 Jun 24.
Skin burns result from thermal or chemical damage to the skin, requiring timely and accurate assessment for effective treatment. Determining the degree of burns is crucial for appropriate clinical decisions, especially for interventions like grafting. However, visual burn degree classification is challenging for non-specialists, underscoring the need for Artificial Intelligence(AI)-powered tools to assist in burn assessment. Current AI models face challenges related to biases, validation, and limited data availability, and there is no standardized system for skin burn classification.
This study develops an AI-based approach to classify burn images into three degrees for initial assessment recommendations and employs binary classification for grafting determination. The methodology includes a robust data collection and preprocessing pipeline, which enhances existing datasets by filtering publicly available labeled data, annotating unlabeled data, and collaborating with specialists for local data annotation. A diverse, high-quality dataset is built by integrating images from various sources to ensure generalization across populations, with a particular focus on Egyptian skin tones. Deep learning models, including ResNet50, DenseNet, MobileNet, VGG16, and ShuffleNet, are employed to classify burn images. A cascading classifier approach is used for burn degree classification, which is divided into two stages: first-degree vs. others and second-degree vs. third-degree.
The highest performance is achieved using a modified ResNet50 model, which attains an accuracy of 94.03% and an F1 score of 0.94 for grafting classification, outperforming state-of-the-art models by at least 5% during cross-validation. For the burn degree classification task, the cascading classifier approach yields an accuracy of 63.23% and an F1 score of 0.63. These results demonstrate the effectiveness of deep learning models when supported by a carefully curated, diverse dataset, specifically that the model was tested using multiple source data from different clinical settings.
This study highlights the potential of AI models in skin burn classification and clinical decision support, particularly with diverse, high-quality datasets. Our approach, which addresses dataset challenges and incorporates novel methods like cascading classifiers and grafting classification, represents a significant step toward developing a standardized AI system for skin burn assessment. The findings show that deep learning models can significantly improve classification performance, paving the way for more reliable, clinically applicable burn assessment tools.
皮肤烧伤是由皮肤的热损伤或化学损伤引起的,需要及时准确的评估以进行有效治疗。确定烧伤程度对于做出恰当的临床决策至关重要,尤其是对于诸如植皮等干预措施。然而,对于非专业人员来说,通过视觉进行烧伤程度分类具有挑战性,这凸显了需要借助人工智能(AI)工具来辅助烧伤评估。当前的AI模型面临与偏差、验证以及数据可用性有限相关的挑战,并且不存在用于皮肤烧伤分类的标准化系统。
本研究开发了一种基于AI的方法,将烧伤图像分为三个程度以给出初始评估建议,并采用二元分类来确定是否需要植皮。该方法包括一个强大的数据收集和预处理流程,通过筛选公开可用的标注数据、标注未标注数据以及与专家合作进行本地数据标注来增强现有数据集。通过整合来自各种来源的图像构建了一个多样化、高质量的数据集,以确保在不同人群中具有通用性,特别关注埃及人的肤色。使用包括ResNet50、DenseNet、MobileNet、VGG16和ShuffleNet在内的深度学习模型对烧伤图像进行分类。采用级联分类器方法进行烧伤程度分类,分为两个阶段:一度烧伤与其他烧伤的区分以及二度烧伤与三度烧伤的区分。
使用改进的ResNet50模型取得了最高性能,该模型在植皮分类方面的准确率达到94.03%,F1分数为0.94,在交叉验证期间比现有最先进模型至少高出5%。对于烧伤程度分类任务,级联分类器方法的准确率为63.23%,F1分数为0.63。这些结果证明了在精心策划的多样化数据集的支持下深度学习模型的有效性,特别是该模型使用了来自不同临床环境的多源数据进行测试。
本研究突出了AI模型在皮肤烧伤分类和临床决策支持方面的潜力,特别是在多样化、高质量数据集的情况下。我们的方法解决了数据集挑战,并纳入了级联分类器和植皮分类等新方法,朝着开发用于皮肤烧伤评估的标准化AI系统迈出了重要一步。研究结果表明深度学习模型可以显著提高分类性能,为更可靠、临床适用的烧伤评估工具铺平了道路。