John Nathalie, Korinth Sebastian P, Kunter Mareike, Baier-Mosch Franziska
IDeA, Center for Individual Development and Adaptive Education of Children at Risk, Frankfurt am Main, Germany.
DIPF | Leibniz Institute for Research and Information in Education, Frankfurt am Main, Germany.
Sci Rep. 2025 Jun 25;15(1):20291. doi: 10.1038/s41598-025-06654-x.
Instructional videos need to maintain learners' attention to foster learning, therefore, a fine-grained measurement of attention is required. Existing gaze measures like inter-subject correlation (ISC) assume a singular focal point deemed meaningful for indicating attention. We argue that multiple meaningful foci can exist and propose an automatically generated gaze measure labeled gaze cluster membership (GCM). By applying the density-based clustering in spatial databases (DBSCAN) algorithm to gaze position data from over 100 participants, we categorize viewers as attentive when they are part of a cluster and as inattentive when they are not. Using two videos, we demonstrate that our settings of DBSCAN generate meaningful clusters. We show that low ISC values (neuronal and eye tracking data) during multiple meaningful foci do not necessarily indicate a lack of attention. Additionally, GCM predicts participants' self-reported mental effort and their tested knowledge. Our innovative approach is of high value for assessing learner attention and designing instructional videos.
教学视频需要保持学习者的注意力以促进学习,因此,需要对注意力进行细粒度测量。现有的注视测量方法,如受试者间相关性(ISC),假设存在一个单一的焦点,认为该焦点对于指示注意力具有意义。我们认为可以存在多个有意义的焦点,并提出一种自动生成的注视测量方法,称为注视簇成员资格(GCM)。通过将基于密度的空间数据库聚类(DBSCAN)算法应用于来自100多名参与者的注视位置数据,我们将观看者归类为:当他们属于一个簇时为注意力集中,当他们不属于一个簇时为注意力不集中。使用两个视频,我们证明了我们对DBSCAN的设置能生成有意义的簇。我们表明,在存在多个有意义焦点的情况下,低ISC值(神经和眼动追踪数据)不一定表明缺乏注意力。此外,GCM可以预测参与者自我报告的心理努力程度和他们测试的知识。我们的创新方法对于评估学习者的注意力和设计教学视频具有很高的价值。