Liu Jiangle, Yan Xueqing, Wu Hao, Ji Ziqin, Shan Ye, Wang Xinyan, Ran Yunfan, Ma Yichen, Li Caitao, Zhu Yuchao, Gu Ruichu, Wen Han, Yi Chengqi, Chen Peng R
The National Key Laboratory of Gene Function Studies and Manipulation, School of Life Sciences, Peking University, Beijing, China.
Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-09165-x.
The incorporation of non-canonical amino acids (ncAAs) enables customized chemistry to tailor protein functions. Genetic code expansion offers a general approach for ncAA encoding by reassigning stop codons as the 'blank' codon; however, it is not completely orthogonal to translation termination for cellular transcripts. Here, to generate more bona fide blank codons, we developed an RNA codon-expansion (RCE) strategy that introduces and decodes bioorthogonally assignable pseudouridine (Ψ) codons (ΨGA, ΨAA or ΨAG) on specified mRNA transcripts to incorporate ncAAs in mammalian cells. The RCE strategy comprises a programmable guide RNA, an engineered decoder tRNA, and aminoacyl-tRNA synthetase. We first developed the RCE(ΨGA) system, which incorporates functional ncAAs into proteins via the ΨGA codon, demonstrating a higher translatome-wide and proteomic specificity compared with the genetic code expansion system. We further expanded our strategy to produce the RCE(ΨAA) and RCE(ΨAG) systems, with all three Ψ codon:(Ψ codon)-tRNA pairs exhibiting mutual orthogonality. Moreover, we demonstrated that the RCE system cooperates compatibly with the genetic code expansion strategy for dual ncAA encoding. In sum, the RCE method utilized Ψ as a post-transcriptional 'letter' to encode and decode RNA codons in specific mRNA transcripts, opening a new route for genetic alphabet expansion and site-specific ncAA incorporation in eukaryotic cells.
非标准氨基酸(ncAAs)的掺入能够实现定制化学以调整蛋白质功能。遗传密码扩展通过将终止密码子重新分配为“空白”密码子提供了一种用于ncAA编码的通用方法;然而,对于细胞转录本而言,它与翻译终止并非完全正交。在此,为了生成更多真正的空白密码子,我们开发了一种RNA密码子扩展(RCE)策略,该策略在特定的mRNA转录本上引入并解码生物正交可分配的假尿苷(Ψ)密码子(ΨGA、ΨAA或ΨAG),以便在哺乳动物细胞中掺入ncAAs。RCE策略包括一个可编程的引导RNA、一个工程化的解码tRNA和氨酰-tRNA合成酶。我们首先开发了RCE(ΨGA)系统,该系统通过ΨGA密码子将功能性ncAAs掺入蛋白质中,与遗传密码扩展系统相比,显示出更高的全转录组范围和蛋白质组特异性。我们进一步扩展了我们的策略以产生RCE(ΨAA)和RCE(ΨAG)系统,所有三个Ψ密码子:(Ψ密码子)-tRNA对都表现出相互正交性。此外,我们证明了RCE系统与遗传密码扩展策略兼容,可用于双重ncAA编码。总之,RCE方法利用Ψ作为转录后的“字母”来编码和解码特定mRNA转录本中的RNA密码子,为真核细胞中的遗传字母扩展和位点特异性ncAA掺入开辟了一条新途径。