Suppr超能文献

μMap-FFPE:用于福尔马林固定石蜡包埋组织样本的高分辨率蛋白质邻近标记平台

μMap-FFPE: A High-Resolution Protein Proximity Labeling Platform for Formalin-Fixed Paraffin-Embedded Tissue Samples.

作者信息

Bissonnette Noah B, Zamanis Marie E, Knutson Steve D, Boyer Zane, Harris Angelo, Martin Daniel, Geri Jacob B, Couto Suzana, Ahmadi Tahamtan, Muthuswamy Anantharaman, Fereshteh Mark, MacMillan David W C

机构信息

Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States.

Genmab US, Inc., Building 2, 777 Scudders Mill Rd, Princeton, New Jersey 08540, United States.

出版信息

J Am Chem Soc. 2025 Jul 9;147(27):23387-23394. doi: 10.1021/jacs.5c06489. Epub 2025 Jun 25.

Abstract

Many disease states can be understood by elucidating small-scale biomolecular protein interaction networks, or microenvironments. Photoproximity labeling methods, like μMap, have recently emerged as high-resolution techniques for mapping spatial relationships within subcellular architectures. However, models typically utilized lack the cell-type heterogeneity and three-dimensional structure essential for translating findings to clinical settings. To this end, formalin-fixed paraffin-embedded (FFPE) tissues are invaluable model systems for biomedical research, as they preserve complex multicellular interaction networks in their natural environment. While identifying microscale interactions in these samples could provide critical clinical insights, chemical modifications introduced during formalin-fixation and de-cross-linking are incompatible with standard photoproximity labeling techniques. Herein, we introduce μMap-FFPE, a new labeling system that enables comparison of the CD20 interactome across healthy cells, cancerous cells, and preserved patient tissues.

摘要

通过阐明小规模生物分子蛋白质相互作用网络或微环境,可以理解许多疾病状态。像μMap这样的光邻近标记方法最近已成为用于绘制亚细胞结构内空间关系的高分辨率技术。然而,通常使用的模型缺乏将研究结果转化为临床应用所必需的细胞类型异质性和三维结构。为此,福尔马林固定石蜡包埋(FFPE)组织是生物医学研究中非常有价值的模型系统,因为它们在自然环境中保留了复杂的多细胞相互作用网络。虽然在这些样本中识别微观相互作用可以提供关键的临床见解,但福尔马林固定和去交联过程中引入的化学修饰与标准光邻近标记技术不兼容。在此,我们介绍了μMap-FFPE,这是一种新的标记系统,能够比较健康细胞、癌细胞和保存的患者组织中的CD20相互作用组。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验