Islam Naeyma N, Caulfield Thomas R
Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
Digital Ether Computing, Miami, FL33130, USA.
Biomolecules. 2025 Jun 10;15(6):849. doi: 10.3390/biom15060849.
Alzheimer's disease (AD) is marked by the pathological accumulation of amyloid beta-42 (Aβ42), contributing to synaptic dysfunction and neurodegeneration. While extracellular amyloid plaques are well-studied, increasing evidence highlights intracellular Aβ42 as an early and toxic driver of disease progression. In this study, we present a novel, Generative AI-based drug design approach to promote targeted degradation of Aβ42 via the ubiquitin-proteasome system (UPS), using E3 ligase-directed molecular glues. We systematically evaluated the ternary complex formation potential of Aβ42 with three E3 ligases (CRBN, VHL, and MDM2) through structure-based modeling, ADMET screening, and docking. We then developed a Ligase-Conditioned Junction Tree Variational Autoencoder (LC-JT-VAE) to generate ligase-specific small molecules, incorporating protein sequence embeddings and torsional angle-aware molecular graphs. Our results demonstrate that this generative model can produce chemically valid, novel, and target-specific molecular glues capable of facilitating Aβ42 degradation. This integrated approach offers a promising framework for designing UPS-targeted therapies for neurodegenerative diseases.
阿尔茨海默病(AD)的特征是β淀粉样蛋白42(Aβ42)的病理性积累,这会导致突触功能障碍和神经退行性变。虽然细胞外淀粉样斑块已得到充分研究,但越来越多的证据表明细胞内Aβ42是疾病进展的早期毒性驱动因素。在本研究中,我们提出了一种基于生成式人工智能的新型药物设计方法,通过泛素-蛋白酶体系统(UPS),利用E3连接酶导向的分子胶促进Aβ42的靶向降解。我们通过基于结构的建模、ADMET筛选和对接,系统地评估了Aβ42与三种E3连接酶(CRBN、VHL和MDM2)形成三元复合物的潜力。然后,我们开发了一种连接酶条件化连接树变分自编码器(LC-JT-VAE),以生成连接酶特异性小分子,整合蛋白质序列嵌入和扭转角感知分子图。我们的结果表明,这种生成模型可以产生化学上有效的、新颖的且具有靶点特异性的分子胶,能够促进Aβ42的降解。这种综合方法为设计针对神经退行性疾病的UPS靶向疗法提供了一个有前景的框架。