Suppr超能文献

胶质母细胞瘤中药物重新利用的整合工作流程:治疗候选药物的计算预测和临床前验证

Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates.

作者信息

Gonzalez Nazareno, Pérez Küper Melanie, Garcia Fallit Matías, Agudelo Jorge A Peña, Nicola Candia Alejandro, Suarez Velandia Maicol, Romero Ana Clara, Videla Richardson Guillermo, Candolfi Marianela

机构信息

Instituto de Investigaciones Biomédicas (INBIOMED, CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.

Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428AQK, Argentina.

出版信息

Brain Sci. 2025 Jun 13;15(6):637. doi: 10.3390/brainsci15060637.

Abstract

BACKGROUND

Glioblastoma (GBM) remains a significant challenge in oncology due to its resistance to standard treatments including temozolomide. This study aimed to develop and validate an integrated model for predicting GBM sensitivity to alternative chemotherapeutics and identifying new drugs and combinations with therapeutic potential.

RESEARCH DESIGN AND METHODS

We analyzed drug sensitivity data for 272 compounds from CancerRxTissue and employed in silico algorithms to assess blood-brain barrier permeability. The model was used to predict GBM sensitivity to various drugs, which was then validated using GBM cellular models. Alternative drugs targeting overexpressed and negative prognostic biomarkers in GBM were experimentally validated.

RESULTS

The model predicted that GBM is more sensitive to Etoposide and Cisplatin compared to Temozolomide, which was confirmed by experimental validation in GBM cells. We also identified novel drugs with high predicted sensitivity in GBM. Daporinad, a NAMPT inhibitor that permeates the blood-brain barrier was selected for further preclinical evaluation. This evaluation supported the in silico predictions of high potential efficacy and safety in GBM.

CONCLUSIONS

Our findings using different cellular models suggest that this computational prediction model could constitute a valuable tool for drug repurposing in GBM and potentially in other tumors, which could accelerate the development of more effective cancer treatments.

摘要

背景

胶质母细胞瘤(GBM)由于对包括替莫唑胺在内的标准治疗具有耐药性,仍然是肿瘤学领域的重大挑战。本研究旨在开发并验证一种综合模型,用于预测GBM对替代化疗药物的敏感性,并识别具有治疗潜力的新药及联合用药方案。

研究设计与方法

我们分析了来自CancerRxTissue的272种化合物的药物敏感性数据,并采用计算机算法评估血脑屏障通透性。该模型用于预测GBM对各种药物的敏感性,随后使用GBM细胞模型进行验证。对靶向GBM中过表达和负性预后生物标志物的替代药物进行了实验验证。

结果

该模型预测,与替莫唑胺相比,GBM对依托泊苷和顺铂更敏感,这在GBM细胞的实验验证中得到了证实。我们还在GBM中鉴定出预测敏感性高的新型药物。选择了一种可穿透血脑屏障的烟酰胺磷酸核糖转移酶(NAMPT)抑制剂达泊利单抗进行进一步的临床前评估。该评估支持了计算机模拟预测的GBM中高潜在疗效和安全性。

结论

我们使用不同细胞模型的研究结果表明,这种计算预测模型可能成为GBM以及潜在其他肿瘤中药物重新利用的有价值工具,这可能加速更有效癌症治疗方法的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7741/12191016/8e3af8a482f0/brainsci-15-00637-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验