Suppr超能文献

单倍体生产:最新进展、前景与展望

Haploid Production in : Recent Updates, Prospects, and Perspectives.

作者信息

Ahsan S M, Injamum-Ul-Hoque Md, Howlader Nayan Chandra, Rahman Md Mezanur, Rahman Md Mahfuzur, Haque Md Azizul, Choi Hyong Woo

机构信息

Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea.

Department of Agriculture, Gopalganj Science and Technology University, Gopalganj 8100, Bangladesh.

出版信息

Biology (Basel). 2025 Jun 15;14(6):701. doi: 10.3390/biology14060701.

Abstract

L. is a dioecious species known to produce over 1600 chemical constituents, including more than 180 cannabinoids classified into 11 structural groups. These bioactive compounds are predominantly synthesised in the glandular trichomes of female inflorescences. However, sex determination in is influenced by both genetic and environmental factors, often leading to the development of male flowers on female plants. This unintended fertilisation reduces cannabinoid yield and increases genetic heterogeneity and challenges in medical cannabis production. Haploid and doubled haploid (DH) technologies offer a promising solution by rapidly generating homozygous lines from gametophytic (e.g., unpollinated ovaries and ovules) or sporophytic tissues (e.g., anthers and microspores) via in vitro culture or chromosome reduction during hybridisation. In land plants, the life cycle alternates between a diploid sporophyte and a haploid gametophyte generation, both capable of mitotic division to form multicellular bodies. A single genome regulates this phase transition and encodes the molecular, genetic, and epigenetic mechanisms that precisely control the developmental processes unique to each generation. While the application of haploid technology in remains limited, through recent progress in haploid induction (HI) and CRISPR-based genome editing, the direct modification of haploid gametes or embryos enables the creation of null homozygous lines following chromosome doubling, improving genetic uniformity. Understanding the molecular mechanisms of spontaneous chromosome doubling may further facilitate the development of elite cannabis genotypes. Ultimately, enhancing the efficiency of DH production and optimising genome editing approaches could significantly increase the speed of genetic improvement and cultivar development in .

摘要

大麻是一种雌雄异株的物种,已知能产生1600多种化学成分,其中包括180多种大麻素,这些大麻素可分为11个结构组。这些生物活性化合物主要在雌花序的腺毛中合成。然而,大麻的性别决定受遗传和环境因素的影响,常常导致雌株上长出雄花。这种意外的授粉会降低大麻素产量,增加遗传异质性,并给医用大麻生产带来挑战。单倍体和双单倍体(DH)技术提供了一个有前景的解决方案,即通过体外培养或杂交过程中的染色体加倍,从配子体组织(如未授粉的子房和胚珠)或孢子体组织(如花药和小孢子)快速产生纯合系。在陆生植物中,生命周期在二倍体孢子体和单倍体配子体世代之间交替,二者都能进行有丝分裂形成多细胞体。单个基因组调控这种阶段转变,并编码精确控制每个世代独特发育过程的分子、遗传和表观遗传机制。虽然单倍体技术在大麻中的应用仍然有限,但通过单倍体诱导(HI)和基于CRISPR的基因组编辑的最新进展,对单倍体配子或胚胎的直接修饰能够在染色体加倍后创建无效纯合系,提高遗传一致性。了解自发染色体加倍的分子机制可能会进一步促进优良大麻基因型的开发。最终,提高双单倍体生产效率并优化基因组编辑方法可以显著加快大麻遗传改良和品种培育的速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20b8/12189703/8dba0924eab1/biology-14-00701-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验