Gutierrez-Sandoval Ramon, Gutierrez-Castro Francisco, Muñoz-Godoy Natalia, Rivadeneira Ider, Sobarzo Adolay, Alarcón Luis, Dorado Wilson, Lagos Andy, Montenegro Diego, Muñoz Ignacio, Aguilera Rodrigo, Iturra Jordan, Krakowiak Francisco, Peña-Vargas Cristián, Toledo Andres
Department of Oncopathology, OGRD Alliance, Lewes, DE 19958, USA.
Department of Cancer Research, Flowinmunocell-Bioexocell Group, 08028 Barcelona, Spain.
Biomedicines. 2025 May 26;13(6):1299. doi: 10.3390/biomedicines13061299.
Despite the progress in cancer immunotherapy, therapeutic responses in solid tumors remain suboptimal due to the immunosuppressive nature of the tumor microenvironment (TME), limited immune cell infiltration, and inefficient delivery of immune-activating agents. Dendritic cell-based therapies possess strong immunological potential but face challenges in viability, standardization, and scalability. Likewise, exosomes and CAR-T cells are hindered by instability, production complexity, and limited efficacy in immune-excluded tumor settings. : This study evaluates dendritic cell-derived vesicles (DC-Vesicles), embedded in a phospholipid-rich structural scaffold, as a multi-functional and scalable platform for immune modulation and therapeutic delivery. We aimed to assess their structural stability, immune marker preservation under clinical processing conditions, and potential to reprogram the TME. : DC-Vesicles were generated and analyzed using bottom-up proteomics via nanoLC-MS/MS on a timsTOF Pro 2 system under three conditions: fresh, concentrated, and cryopreserved. A consistent proteomic profile of over 400 proteins was identified, with cryopreserved samples retaining >90% of immune-relevant markers. Differential expression analysis confirmed stability of key immunological proteins such as HLA-A, QSOX1, ICAM1, NAMPT, TIGAR, and Galectin-9. No significant degradation was observed post-cryopreservation. Visualization through heatmaps, PCA, and volcano plots supported inter-condition consistency. In silico modeling suggested preserved capacity for M1 macrophage polarization and CD8 T cell activation. : DC-Vesicles demonstrate structural resilience and functional retention across storage conditions. Their cold-chain-independent compatibility, immune-targeting profile, and potential regulatory classification as Non-New Chemical Entities (NCEs) support their advancement as candidates for precision immunotherapy in resistant solid tumors.
尽管癌症免疫疗法取得了进展,但由于肿瘤微环境(TME)的免疫抑制特性、有限的免疫细胞浸润以及免疫激活剂的递送效率低下,实体瘤的治疗反应仍然不尽人意。基于树突状细胞的疗法具有强大的免疫潜力,但在生存能力、标准化和可扩展性方面面临挑战。同样,外泌体和嵌合抗原受体T细胞(CAR-T细胞)也受到不稳定性、生产复杂性以及在免疫排除肿瘤环境中疗效有限的阻碍。本研究评估了嵌入富含磷脂的结构支架中的树突状细胞衍生囊泡(DC-囊泡),将其作为用于免疫调节和治疗递送 的多功能且可扩展平台。我们旨在评估它们的结构稳定性、临床处理条件下免疫标志物的保存情况以及重编程TME的潜力。在三种条件下,即新鲜、浓缩和冷冻保存条件下,使用自下而上的蛋白质组学通过纳升液相色谱-串联质谱(nanoLC-MS/MS)在timsTOF Pro
2系统上生成并分析DC-囊泡。鉴定出了400多种蛋白质的一致蛋白质组图谱,冷冻保存的样品保留了>90%的免疫相关标志物。差异表达分析证实了关键免疫蛋白如HLA-A、QSOX1、ICAM1、NAMPT、TIGAR和半乳糖凝集素-9的稳定性。冷冻保存后未观察到明显降解。通过热图、主成分分析(PCA)和火山图进行的可视化支持了不同条件之间的一致性。计算机模拟表明保留了M1巨噬细胞极化和CD8 T细胞激活的能力。DC-囊泡在不同储存条件下均表现出结构弹性和功能保留。它们不依赖冷链的兼容性、免疫靶向特性以及作为非新化学实体(NCEs)的潜在监管分类,支持它们作为难治性实体瘤精准免疫疗法候选物的进展。