Suppr超能文献

糖尿病视网膜病变分类中以病变为中心和基于严重程度的方法的比较研究:提高可解释性和性能

A Comparative Study of Lesion-Centered and Severity-Based Approaches to Diabetic Retinopathy Classification: Improving Interpretability and Performance.

作者信息

Park Gang-Min, Moon Ji-Hoon, Jung Ho-Gil

机构信息

Department of Data Science, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.

Department of Ophthalmology, National Medical Center, Seoul 04564, Republic of Korea.

出版信息

Biomedicines. 2025 Jun 12;13(6):1446. doi: 10.3390/biomedicines13061446.

Abstract

Despite advances in artificial intelligence (AI) for Diabetic Retinopathy (DR) classification, traditional severity-based approaches often lack interpretability and fail to capture specific lesion-centered characteristics. To address these limitations, we constructed the National Medical Center (NMC) dataset, independently annotated by medical professionals with detailed labels of major DR lesions, including retinal hemorrhages, microaneurysms, and exudates. This study explores four critical research questions. First, we assess the analytical advantages of lesion-centered labeling compared to traditional severity-based labeling. Second, we investigate the potential complementarity between these labeling approaches through integration experiments. Third, we analyze how various model architectures and classification strategies perform under different labeling schemes. Finally, we evaluate decision-making differences between labeling methods using visualization techniques. We benchmarked the lesion-centered NMC dataset against the severity-based public Asia Pacific Tele-Ophthalmology Society (APTOS) dataset, conducting experiments with EfficientNet-a convolutional neural network architecture-and diverse classification strategies. Our results demonstrate that binary classification effectively identifies severe non-proliferative Diabetic Retinopathy (Severe NPDR) exhibiting complex lesion patterns, while relationship-based learning enhances performance for underrepresented classes. Transfer learning from NMC to APTOS notably improved severity classification, achieving performance gains of 15.2% in mild cases and 66.3% in severe cases through feature fusion using Bidirectional Feature Pyramid Network (BiFPN) and Feature Pyramid Network (FPN). Visualization results confirmed that lesion-centered models focus more precisely on pathological features. Our findings highlight the benefits of integrating lesion-centered and severity-based information to enhance both accuracy and interpretability in DR classification. Future research directions include spatial lesion mapping and the development of clinically grounded learning methodologies.

摘要

尽管人工智能在糖尿病视网膜病变(DR)分类方面取得了进展,但传统的基于严重程度的方法往往缺乏可解释性,并且无法捕捉以特定病变为中心的特征。为了解决这些局限性,我们构建了国家医疗中心(NMC)数据集,由医学专业人员独立注释,包含主要DR病变的详细标签,如视网膜出血、微动脉瘤和渗出物。本研究探讨了四个关键研究问题。第一,我们评估以病变为中心的标签与传统基于严重程度的标签相比的分析优势。第二,我们通过整合实验研究这些标签方法之间的潜在互补性。第三,我们分析各种模型架构和分类策略在不同标签方案下的表现。最后,我们使用可视化技术评估标签方法之间的决策差异。我们将以病变为中心的NMC数据集与基于严重程度的公共亚太远程眼科学会(APTOS)数据集进行基准测试,使用高效神经网络架构EfficientNet和多种分类策略进行实验。我们的结果表明,二元分类有效地识别出表现出复杂病变模式的严重非增殖性糖尿病视网膜病变(Severe NPDR),而基于关系的学习提高了代表性不足类别的性能。从NMC到APTOS的迁移学习显著改善了严重程度分类,通过使用双向特征金字塔网络(BiFPN)和特征金字塔网络(FPN)进行特征融合,在轻度病例中性能提高了15.2%,在严重病例中提高了66.3%。可视化结果证实,以病变为中心的模型更精确地聚焦于病理特征。我们的研究结果强调了整合以病变为中心和基于严重程度的信息以提高DR分类的准确性和可解释性的好处。未来研究方向包括空间病变映射和基于临床的学习方法的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cde5/12191321/f3e6b8885382/biomedicines-13-01446-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验