Suppr超能文献

用于脓毒症的机器学习增强分诊:使用SHAP解释的元集成模型进行重症监护病房实时死亡率预测

Machine Learning-Augmented Triage for Sepsis: Real-Time ICU Mortality Prediction Using SHAP-Explained Meta-Ensemble Models.

作者信息

Yilmaz Başer Hülya, Evran Turan, Cifci Mehmet Akif

机构信息

Department of Emergency Medicine, Faculty of Medicine, Bandirma Onyedi Eylul University, 10250 Balıkesir, Türkiye.

Department of Anesthesia and Reanimation, Faculty of Medicine, Pamukkale University, 20070 Denizli, Türkiye.

出版信息

Biomedicines. 2025 Jun 12;13(6):1449. doi: 10.3390/biomedicines13061449.

Abstract

Optimization algorithms are acknowledged to be critical in various fields and dynamical systems since they provide facilitation in identifying and retrieving the most possible solutions concerning complex problems besides improving efficiency, cutting down on costs, and boosting performance. Metaheuristic optimization algorithms, on the other hand, are inspired by natural phenomena, providing significant benefits related to the applicable solutions for complex optimization problems. Considering that complex optimization problems emerge across various disciplines, their successful applications are possible to be observed in tasks of classification and feature selection tasks, including diagnostic processes of certain health problems based on bio-inspiration. Sepsis continues to pose a significant threat to patient survival, particularly among individuals admitted to intensive care units from emergency departments. Traditional scoring systems, including qSOFA, SIRS, and NEWS, often fall short of delivering the precision necessary for timely and effective clinical decision-making. In this study, we introduce a novel, interpretable machine learning framework designed to predict in-hospital mortality in sepsis patients upon intensive care unit admission. Utilizing a retrospective dataset from a tertiary university hospital encompassing patient records from January 2019 to June 2024, we extracted comprehensive clinical and laboratory features. To address class imbalance and missing data, we employed the Synthetic Minority Oversampling Technique and systematic imputation methods, respectively. Our hybrid modeling approach integrates ensemble-based ML algorithms with deep learning architectures, optimized through the Red Piranha Optimization algorithm for feature selection and hyperparameter tuning. The proposed model was validated through internal cross-validation and external testing on the MIMIC-III dataset as well. The proposed model demonstrates superior predictive performance over conventional scoring systems, achieving an area under the receiver operating characteristic curve of 0.96, a Brier score of 0.118, and a recall of 81. These results underscore the potential of AI-driven tools to enhance clinical decision-making processes in sepsis management, enabling early interventions and potentially reducing mortality rates.

摘要

优化算法在各个领域和动态系统中都被认为至关重要,因为它们有助于识别和获取复杂问题的最可能解决方案,同时提高效率、降低成本并提升性能。另一方面,元启发式优化算法受自然现象启发,为复杂优化问题的适用解决方案带来显著益处。鉴于复杂优化问题出现在各个学科中,其成功应用可见于分类和特征选择任务,包括基于生物启发的某些健康问题的诊断过程。脓毒症仍然对患者生存构成重大威胁,尤其是在从急诊科转入重症监护病房的患者中。传统评分系统,包括qSOFA、SIRS和NEWS,往往缺乏及时有效临床决策所需的精准度。在本研究中,我们引入了一种新颖的、可解释的机器学习框架,旨在预测脓毒症患者入住重症监护病房后的院内死亡率。利用一所三级大学医院2019年1月至2024年6月的回顾性数据集,我们提取了全面的临床和实验室特征。为解决类别不平衡和数据缺失问题,我们分别采用了合成少数过采样技术和系统插补方法。我们的混合建模方法将基于集成的机器学习算法与深度学习架构相结合,通过红食人鱼优化算法进行特征选择和超参数调整。所提出的模型通过内部交叉验证以及在MIMIC - III数据集上的外部测试进行了验证。所提出的模型在预测性能上优于传统评分系统,受试者操作特征曲线下面积达到0.96,布里尔评分0.118,召回率81。这些结果凸显了人工智能驱动工具在脓毒症管理中增强临床决策过程、实现早期干预并可能降低死亡率的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fbd/12190226/2c0354aa0895/biomedicines-13-01449-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验