Hawsawi Hassan B, Papadaki Anastasia, Vakharia Vejay N, Thornton John S, Carmichael David W, Kumar Suchit, Lemieux Louis
Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
MRI Unit, Epilepsy Society, Chalfont St. Peter, Buckinghamshire SL9 0RJ, UK.
Bioengineering (Basel). 2025 May 24;12(6):564. doi: 10.3390/bioengineering12060564.
The acquisition of electroencephalography (EEG) concurrently with functional magnetic resonance imaging (fMRI) requires a careful consideration of the health hazards resulting from interactions between the scanner's electromagnetic fields and EEG recording equipment. The primary safety concern is excessive RF-induced heating of the tissue in the vicinity of electrodes. We have previously demonstrated that concurrent intracranial EEG (icEEG) and fMRI data acquisitions (icEEG-fMRI) can be performed with acceptable risk in specific conditions using a head RF transmit coil. Here, we estimate the potential additional heating associated with the addition of scalp EEG electrodes using a body transmit RF coil. In this study, electrodes were placed in clinically realistic positions on a phantom in two configurations: (1) icEEG electrodes only, and (2) following the addition of subdermal scalp electrodes. Heating was measured during MRI scans using a body transmit coil with a high specific absorption rate (SAR), TSE (turbo spin echo), and low SAR gradient-echo EPI (echo-planar imaging) sequences. During the application of the high-SAR sequence, the maximum temperature change for the intracranial electrodes was +2.8 °C. The addition of the subdural scalp EEG electrodes resulted in a maximum temperature change for the intracranial electrodes of 2.1 °C and +0.6 °C across the scalp electrodes. For the low-SAR sequence, the maximum temperature increase across all intracranial and scalp electrodes was +0.7 °C; in this condition, the temperature increases around the intracranial electrodes were below the detection level. Therefore, in the experimental conditions (MRI scanner, electrode, and wire configurations) used at our centre for icEEG-fMRI, adding six scalp EEG electrodes did not result in significant additional localised RF-induced heating compared to the model using icEEG electrodes only.
同时进行脑电图(EEG)和功能磁共振成像(fMRI)采集时,需要仔细考虑扫描仪的电磁场与EEG记录设备之间相互作用所产生的健康危害。主要的安全问题是电极附近组织因射频(RF)感应而过度发热。我们之前已经证明,在特定条件下使用头部RF发射线圈,可以在可接受的风险下同时进行颅内EEG(icEEG)和fMRI数据采集(icEEG-fMRI)。在此,我们估计使用身体发射RF线圈添加头皮EEG电极可能带来的额外发热。在本研究中,将电极以两种配置放置在模拟人体模型上符合临床实际的位置:(1)仅放置icEEG电极,以及(2)添加皮下头皮电极之后。在MRI扫描期间,使用具有高比吸收率(SAR)的身体发射线圈、快速自旋回波(TSE)序列和低SAR梯度回波平面回波成像(EPI)序列来测量发热情况。在应用高SAR序列期间,颅内电极的最大温度变化为+2.8℃。添加硬膜下头皮EEG电极后,颅内电极的最大温度变化为2.1℃,头皮电极的最大温度变化为+0.6℃。对于低SAR序列,所有颅内和头皮电极的最大温度升高为+0.7℃;在这种情况下,颅内电极周围的温度升高低于检测水平。因此,在我们中心用于icEEG-fMRI的实验条件(MRI扫描仪、电极和导线配置)下,与仅使用icEEG电极的模型相比,添加六个头皮EEG电极不会导致显著的额外局部RF感应发热。