Suppr超能文献

用于非梗阻性无精子症患者显微睾丸取精术的快速准确精子检测算法

Fast and Accurate Sperm Detection Algorithm for Micro-TESE in NOA Patients.

作者信息

Mohamed Mahmoud, Kachi Konosuke, Motoya Kohei, Ikeuchi Masashi

机构信息

Laboratory for Biomaterials and Bioengineering, Institute of Science Tokyo, Tokyo 101-0062, Japan.

Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-0033, Japan.

出版信息

Bioengineering (Basel). 2025 May 31;12(6):601. doi: 10.3390/bioengineering12060601.

Abstract

PURPOSE

Non-obstructive azoospermia (NOA) presents major challenges in assisted reproductive technology (ART) due to the extremely low number of viable sperm within testicular tissue. In Micro-TESE procedures, embryologists manually search for sperm under DIC microscopy-a slow, labor-intensive process. We aim to streamline this process with an efficient computational detection tool.

METHODS

We present SD-CLIP (Sperm Detection using Classical Image Processing), a lightweight, real-time algorithm that simulates sperm structure detection from unstained DIC images. The model first identifies convex sperm head candidates based on shape and width using edge gradients, then confirms the presence of a tail via principal component analysis (PCA) of pixel clusters.

RESULTS

Compared to the MB-LBP + AKAZE method, SD-CLIP improved processing speed by 4× and achieved a 3.8× higher posterior probability ratio, making detected sperm candidates significantly more reliable. Evaluation was performed on both human Micro-TESE and mouse testis images, demonstrating robustness in low-sperm environments.

CONCLUSIONS

SD-CLIP simulates a domain-specific image interpretation model that identifies sperm morphology with high specificity. It requires minimal computational resources, supports real-time integration, and could be extended to automated sperm extraction systems. This tool has clinical value for accelerating Micro-TESE and increasing success rates in ART for NOA patients.

摘要

目的

由于睾丸组织内活精子数量极少,非梗阻性无精子症(NOA)在辅助生殖技术(ART)中带来了重大挑战。在显微睾丸精子提取(Micro-TESE)手术中,胚胎学家在微分干涉差显微镜(DIC)下手动寻找精子,这是一个缓慢且劳动密集的过程。我们旨在通过一种高效的计算检测工具简化这一过程。

方法

我们提出了SD-CLIP(使用经典图像处理进行精子检测),这是一种轻量级的实时算法,可从未染色的DIC图像中模拟精子结构检测。该模型首先使用边缘梯度基于形状和宽度识别凸形精子头部候选区域,然后通过像素簇的主成分分析(PCA)确认尾部的存在。

结果

与MB-LBP + AKAZE方法相比,SD-CLIP将处理速度提高了4倍,并实现了高3.8倍的后验概率比,使检测到的精子候选区域显著更可靠。在人类Micro-TESE和小鼠睾丸图像上均进行了评估,证明了在低精子环境中的稳健性。

结论

SD-CLIP模拟了一种特定领域的图像解释模型,能够高度特异性地识别精子形态。它需要最少的计算资源,支持实时集成,并且可以扩展到自动精子提取系统。该工具对于加速Micro-TESE以及提高NOA患者ART的成功率具有临床价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7971/12189846/4284b2ba6f68/bioengineering-12-00601-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验