Cumsille Patricio, Troncoso Felipe, Sandoval Hermes, Acurio Jesenia, Escudero Carlos
Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile.
Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago 8370456, Chile.
Bioengineering (Basel). 2025 Jun 19;12(6):675. doi: 10.3390/bioengineering12060675.
Motivated by illuminating the underlying mechanisms of preeclampsia, we develop a changepoint detection-based general and versatile methodology that can be applied to any experimental model, effectively addressing the challenges of high uncertainty produced by experimental interventions, intrinsic high variability, and rapidly and abruptly varying time dynamics in perfusion signals. This methodology provides a systematic and reliable approach for robust perfusion signal analysis. The main innovation of our methodology is a highly efficient automatic data processing system consisting of modular programming components. These components include a signal processing tool for optimal segmentation of perfusion signals by isolating their "genuine" vascular response to experimental interventions, and a novel and suitable normalization to evaluate this response concerning an experimental reference state, typically basal or pre-intervention. In this way, we can identify anomalies in an experimental group compared to a control group by disaggregating noise during the transitions just after experimental interventions. We have successfully applied our general methodology to perfusion signals measured from a preeclampsia-like syndrome model developed by our research group. Our findings revealed impaired brain perfusion in offspring from preeclampsia, particularly dysfunctional brain perfusion signals with inadequate perfusion signal vasoreactivity to thermal physical stimuli. This general methodology represents a significant step towards a systematic, accurate, and reliable approach to robust perfusion signals analysis across various experimental settings with diverse intervention protocols.
受阐明先兆子痫潜在机制的启发,我们开发了一种基于变点检测的通用方法,该方法可应用于任何实验模型,有效应对实验干预产生的高不确定性、内在的高变异性以及灌注信号中快速且突然变化的时间动态所带来的挑战。这种方法为稳健的灌注信号分析提供了一种系统且可靠的途径。我们方法的主要创新之处在于一个由模块化编程组件组成的高效自动数据处理系统。这些组件包括一个信号处理工具,用于通过分离灌注信号对实验干预的“真实”血管反应来对其进行最佳分割,以及一种新颖且合适的归一化方法,用于根据实验参考状态(通常是基础状态或干预前状态)评估这种反应。通过这种方式,我们可以在实验干预刚结束后的过渡期间分解噪声,从而识别实验组与对照组相比的异常情况。我们已成功将我们的通用方法应用于从我们研究小组开发的先兆子痫样综合征模型测量的灌注信号。我们的研究结果揭示了先兆子痫后代的脑灌注受损,特别是脑灌注信号功能失调,对热物理刺激的灌注信号血管反应性不足。这种通用方法代表了朝着在具有不同干预方案的各种实验环境中进行稳健灌注信号分析的系统、准确和可靠方法迈出的重要一步。