Tandon Raghav, Mei Yajun, Lah James J, Mitchell Cassie S
Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Int J Mol Sci. 2025 Jun 9;26(12):5514. doi: 10.3390/ijms26125514.
Alzheimer's disease (AD) presents significant challenges in clinical practice due to its heterogeneous manifestation and variable progression rates. This work develops a comprehensive anatomical staging framework to predict progression from mild cognitive impairment (MCI) to AD. Using the ADNI database, the scalable Subtype and Stage Inference (s-SuStaIn) model was applied to 118 neuroanatomical features from cognitively normal ( = 504) and AD ( = 346) participants. The framework was validated on 808 MCI participants through associations with clinical progression, CSF and FDG-PET biomarkers, and neuropsychiatric measures, while adjusting for common confounders (age, gender, education, and APOE ε4 alleles). The framework demonstrated superior prognostic accuracy compared to traditional risk assessment (C-index = 0.73 vs. 0.62). Four distinct disease subtypes showed differential progression rates, biomarker profiles (FDG-PET and CSF Aβ42), and cognitive trajectories: Subtype 1, subcortical-first pattern; Subtype 2, executive-cortical pattern; Subtype 3, disconnection pattern; and Subtype 4, frontal-executive pattern. Stage-dependent changes revealed systematic deterioration across diverse cognitive domains, particularly in learning acquisition, visuospatial processing, and functional abilities. This data-driven approach captures clinically meaningful disease heterogeneity and improves prognostication in MCI, potentially enabling more personalized therapeutic strategies and clinical trial design.
阿尔茨海默病(AD)因其临床表现的异质性和进展速度的多变性,在临床实践中带来了重大挑战。这项研究开发了一个全面的解剖分期框架,以预测从轻度认知障碍(MCI)到AD的进展。利用阿尔茨海默病神经成像计划(ADNI)数据库,将可扩展的亚型和阶段推断(s-SuStaIn)模型应用于认知正常(n = 504)和AD患者(n = 346)的118个神经解剖学特征。该框架在808名MCI参与者中进行了验证,通过与临床进展、脑脊液和氟代脱氧葡萄糖正电子发射断层扫描(FDG-PET)生物标志物以及神经精神测量指标的关联进行验证,同时对常见混杂因素(年龄、性别、教育程度和载脂蛋白E ε4等位基因)进行了调整。与传统风险评估相比,该框架显示出更高的预后准确性(C指数 = 0.73对0.62)。四种不同的疾病亚型显示出不同的进展速度、生物标志物特征(FDG-PET和脑脊液Aβ42)以及认知轨迹:亚型1,皮质下优先模式;亚型2,执行-皮质模式;亚型3,连接中断模式;亚型4,额叶-执行模式。阶段依赖性变化揭示了不同认知领域的系统性衰退,特别是在学习获取、视觉空间处理和功能能力方面。这种数据驱动的方法捕捉到了具有临床意义的疾病异质性,并改善了MCI的预后,有可能实现更个性化的治疗策略和临床试验设计。