Suppr超能文献

多重疾病模式与抑郁症:将流行病学关联与风险分层的预测分析相联系。

Multimorbidity Patterns and Depression: Bridging Epidemiological Associations with Predictive Analytics for Risk Stratification.

作者信息

Wang Xiao, Zheng Nan, Yin Mei

机构信息

School of Medical Humanity, Harbin Medical University, Harbin 150081, China.

Continuing Education Department, Harbin Medical University, Harbin 150081, China.

出版信息

Healthcare (Basel). 2025 Jun 18;13(12):1458. doi: 10.3390/healthcare13121458.

Abstract

Late-life depression is a critical public health concern, particularly among older adults with chronic multimorbidity. Existing studies often focus on single-disease associations, neglecting the complex interplay of coexisting conditions. Understanding how multimorbidity patterns contribute to depression risk and identifying high-risk subgroups through integrated statistical and machine learning approaches remain underexplored, limiting targeted prevention strategies. Using data from the China Health and Retirement Longitudinal Study (CHARLS), latent class analysis (LCA) was employed to cluster multimorbidity patterns. Associations between these patterns and depression were analyzed using multivariable logistic regression, while predictive performance and interaction effects were evaluated via an XGBoost machine learning model. Four distinct multimorbidity patterns were identified: cardio-metabolic, digestive-joint, respiratory, and cardiovascular-digestive pattern. All clusters showed significant independent associations with depression, with the cardiovascular-digestive pattern exhibiting the strongest association (OR = 4.56). However, the digestive-joint pattern demonstrated the highest predictive effects for depression. Sociodemographic factors-low income, limited education, female gender, and rural residence-emerged as robust predictors, amplifying depression risk in older adults with multimorbidity. This study bridges epidemiological insights with predictive analytics to inform depression risk stratification. We recommend routine depression screening for all individuals with cardiovascular-digestive diseases and prioritize screening for women with digestive-joint diseases. Additionally, low-income and rural-dwelling older adults with chronic conditions warrant heightened clinical vigilance. These findings provide a framework for integrating multimorbidity profiling into depression prevention protocols, addressing both biological and socioeconomic determinants.

摘要

晚年抑郁症是一个关键的公共卫生问题,在患有慢性多种疾病的老年人中尤为突出。现有研究往往侧重于单一疾病的关联,而忽视了共存疾病之间复杂的相互作用。通过综合统计和机器学习方法来了解多种疾病模式如何导致抑郁风险以及识别高危亚组的研究仍未得到充分探索,这限制了有针对性的预防策略。利用中国健康与养老追踪调查(CHARLS)的数据,采用潜在类别分析(LCA)对多种疾病模式进行聚类。使用多变量逻辑回归分析这些模式与抑郁症之间的关联,同时通过XGBoost机器学习模型评估预测性能和交互作用。确定了四种不同的多种疾病模式:心脏代谢型、消化关节型、呼吸型和心血管消化型。所有聚类均显示与抑郁症存在显著的独立关联,其中心血管消化型的关联最强(OR = 4.56)。然而,消化关节型对抑郁症的预测效果最高。社会人口学因素——低收入、受教育程度有限、女性性别和农村居住——成为有力的预测因素,加剧了患有多种疾病的老年人的抑郁风险。本研究将流行病学见解与预测分析相结合,为抑郁风险分层提供信息。我们建议对所有患有心血管消化系统疾病的个体进行常规抑郁症筛查,并优先对患有消化关节疾病的女性进行筛查。此外,患有慢性病的低收入和农村老年人需要提高临床警惕性。这些发现为将多种疾病概况纳入抑郁症预防方案提供了一个框架,同时解决了生物学和社会经济决定因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cac/12193055/d2edac4c025f/healthcare-13-01458-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验