Sartori Flavio, Codicè Francesco, Caranzano Isabella, Rollo Cesare, Birolo Giovanni, Fariselli Piero, Pancotti Corrado
Computational Biomedicine Unit, Department of Medical Sciences, University of Torino, Via Santena 19, 10126 Torino, Italy.
Genes (Basel). 2025 May 28;16(6):648. doi: 10.3390/genes16060648.
The integration of deep learning (DL) with multi-omics data has significantly advanced our understanding of biological systems, particularly in cancer research. DL enables the analysis of high-dimensional datasets and the discovery of novel disease mechanisms and biomarkers, contributing to improved patient treatment and management. This review provides a detailed overview of recent developments in deep learning models applied to genomics data, with a focus on cancer type classification, driver gene identification, survival analysis, and drug response prediction. We introduce the foundational concepts of machine and deep learning and explain the characteristics of multi-omics data, addressing a broad and interdisciplinary audience. Methods published since 2020 are systematically reviewed, including their model architectures, datasets, and key innovations.
深度学习(DL)与多组学数据的整合极大地推动了我们对生物系统的理解,尤其是在癌症研究领域。DL能够分析高维数据集,并发现新的疾病机制和生物标志物,有助于改善患者的治疗和管理。本综述详细概述了应用于基因组学数据的深度学习模型的最新进展,重点关注癌症类型分类、驱动基因识别、生存分析和药物反应预测。我们介绍了机器学习和深度学习的基础概念,并解释了多组学数据的特征,面向广泛的跨学科读者群体。系统回顾了2020年以来发表的方法,包括它们的模型架构、数据集和关键创新点。