深度基因组学:基于深度学习的基因组测序数据分析以识别基因改变

Deep Genomics: Deep Learning-Based Analysis of Genome-Sequenced Data for Identification of Gene Alterations.

作者信息

Kumar Sourabh, Goel Prabudh

机构信息

Department of Paediatric Surgery, All India Institute of Medical sciences, New Delhi, India.

出版信息

Methods Mol Biol. 2025;2952:335-367. doi: 10.1007/978-1-0716-4690-8_20.

Abstract

The convergence of next-generation sequencing and advanced computational methods has reshaped genomic analysis by enabling unprecedented volumes of molecular data to be generated and scrutinized. This chapter surveys the rapidly evolving landscape of deep genomics, highlighting how breakthroughs in deep learning frameworks-such as Convolutional Neural Networks, Recurrent Neural Networks, Transformers, and Graph Neural Networks-allow researchers to detect, characterize, and interpret complex genetic alterations. We begin by illustrating the progression from traditional bioinformatics to contemporary neural architectures capable of identifying fine-grained molecular signals. CNNs excel at discerning localized sequence motifs, RNNs capture dynamic expression patterns in sequential data, Transformers unveil long-range dependencies crucial for pinpointing regulatory variants, and GNNs trace systemic gene-gene and protein-protein interactions, clarifying how single mutations can ripple throughout biological networks.A central theme is the integration of diverse omic layers-encompassing epigenomic, transcriptomic, and proteomic profiles to offer a more comprehensive perspective on genomic regulation. While this approach amplifies the detection power for pathogenic variants and hidden biomarkers, it also poses significant methodological hurdles related to data harmonization and interpretability. Techniques such as saliency mapping, SHAP analysis, and gradient-based CAM illuminate the internal logic of these deep models, strengthening reliability in clinical diagnostics and fueling mechanistic insights in research settings. Beyond methodological innovations, the chapter underscores data privacy, systematic bias mitigation, and explainability protocols as foundational elements for the safe and ethical use of deep genomics tools in clinical and research environments. Regulatory compliance and transparent communication of model outputs are indispensable for cultivating public trust and ensuring equitable access to genomic medicine.Looking ahead, emerging technologies such as secure multi-institutional data analysis protocols, federated learning, and potential quantum computing applications offer promising avenues for scaling analysis to ever-larger datasets without jeopardizing patient privacy. As these advancements merge with more refined models, precision medicine stands to benefit from unprecedented accuracy in variant interpretation, timely disease diagnosis, and effective therapeutic strategies. By integrating cutting-edge computational methods with robust ethical frameworks, deep genomics is poised to transform our understanding of genetic variation and its implications for human health.

摘要

下一代测序技术与先进计算方法的融合,通过生成和审查前所未有的大量分子数据,重塑了基因组分析。本章概述了深度基因组学快速发展的格局,强调深度学习框架(如卷积神经网络、循环神经网络、Transformer和图神经网络)中的突破如何使研究人员能够检测、表征和解释复杂的基因改变。我们首先说明从传统生物信息学到能够识别细粒度分子信号的当代神经架构的发展历程。卷积神经网络擅长辨别局部序列基序,循环神经网络捕捉序列数据中的动态表达模式,Transformer揭示对于确定调控变异至关重要的长程依赖性,图神经网络追踪系统的基因-基因和蛋白质-蛋白质相互作用,阐明单个突变如何在生物网络中产生连锁反应。一个核心主题是整合不同的组学层面,包括表观基因组、转录组和蛋白质组概况,以提供关于基因组调控更全面的视角。虽然这种方法增强了对致病变异和隐藏生物标志物的检测能力,但也带来了与数据协调和可解释性相关的重大方法学障碍。诸如显著性映射、SHAP分析和基于梯度的类激活映射等技术揭示了这些深度模型的内部逻辑,增强了临床诊断中的可靠性,并为研究环境中的机制洞察提供了助力。除了方法学创新,本章强调数据隐私、系统偏差缓解和可解释性协议是在临床和研究环境中安全且符合道德地使用深度基因组学工具的基础要素。监管合规和模型输出的透明沟通对于培养公众信任和确保公平获得基因组医学至关重要。展望未来,安全的多机构数据分析协议、联邦学习和潜在的量子计算应用等新兴技术为在不危及患者隐私的情况下将分析扩展到更大的数据集提供了有前景的途径。随着这些进展与更精细的模型相结合,精准医学有望在变异解释、及时疾病诊断和有效治疗策略方面受益于前所未有的准确性。通过将前沿计算方法与强大的伦理框架相结合,深度基因组学有望改变我们对基因变异及其对人类健康影响的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索