Suppr超能文献

基于血栓特征的个性化机械取栓是否可行?一种使用非增强CT预测接受血栓抽吸的急性缺血性卒中患者功能预后良好的影像组学模型

Is Personalized Mechanical Thrombectomy Based on Clot Characteristics Feasible? A Radiomics Model Using NCECT to Predict FPE in AIS Patients Undergoing Thromboaspiration.

作者信息

Porto-Álvarez Jacobo, Martínez Fernández Javier, Mosqueira Martínez Antonio Jesús, Blanco Ulla Miguel, Arias Rivas Susana, Rodríguez Castro Emilio, Iglesias Rey Ramón, Pumar José M, García-Figueiras Roberto, Souto Bayarri Miguel

机构信息

Department of Radiology, Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain.

Department of Neurology, Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain.

出版信息

J Clin Med. 2025 Jun 6;14(12):4027. doi: 10.3390/jcm14124027.

Abstract

: In patients with acute ischemic stroke (AIS), the first pass effect (FPE) refers to the complete recanalization of an occluded vessel (TICI = 2C/3) with a single thrombectomy attempt. Achieving complete vessel recanalization is associated with better functional outcomes compared to lower reperfusion rates (TICI < 2B). There is no consensus on which thrombectomy technique provides the best recanalization results for AIS patients. Furthermore, there is a paucity of tools available to predict FPE prior to mechanical thrombectomy (MT). The objective of this study is to develop a radiomics model based on brain NCECT to predict which patients are more likely to achieve a FPE with thromboaspiration MT. : The thrombi of 91 patients were semi-automatically segmented on NCECT. A total of 1167 radiomic features (RFs) were extracted for each patient. Some clinical data (age, gender, cardiovascular risk factors, smoking or alcohol abuse, clot density and clot laterality) were also collected. : A LASSO regression analysis identified nine RFs with nonzero coefficients. A logistic regression model for FPE prediction was developed with nine RFs and eight clinical variables. A total of six RFs were found to be statistically associated with FPE. The clinical variables did not demonstrate a statistically significant association with the likelihood of achieving FPE ( > 0.05). The prediction of which patients are likely to achieve FPE obtained an AUC, accuracy, sensitivity and specificity of 0.890, 0.813, 0.815 and 0.811, respectively ( < 0.05). : Radiomics can help identify patients who are more likely to achieve FPE with thromboaspiration.

摘要

在急性缺血性卒中(AIS)患者中,首次通过效应(FPE)是指在单次血栓切除术尝试后闭塞血管完全再通(脑梗死溶栓分级 [TICI]=2C/3)。与较低的再灌注率(TICI<2B)相比,实现血管完全再通与更好的功能预后相关。对于哪种血栓切除术技术能为AIS患者提供最佳的再通结果,目前尚无共识。此外,在机械取栓(MT)之前,可用于预测FPE的工具很少。本研究的目的是基于脑部非增强CT(NCECT)开发一种放射组学模型,以预测哪些患者更有可能通过血栓抽吸MT实现FPE。

91例患者的血栓在NCECT上进行半自动分割。为每位患者提取了总共1167个放射组学特征(RFs)。还收集了一些临床数据(年龄、性别、心血管危险因素、吸烟或酗酒、血栓密度和血栓位置)。

套索回归分析确定了9个非零系数的RFs。利用9个RFs和8个临床变量建立了FPE预测的逻辑回归模型。共发现6个RFs与FPE有统计学关联。临床变量与实现FPE的可能性未显示出统计学显著关联(P>0.05)。预测哪些患者可能实现FPE的曲线下面积(AUC)、准确率、敏感性和特异性分别为0.890、0.813、0.815和0.811(P<0.05)。

放射组学有助于识别更有可能通过血栓抽吸实现FPE的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cfd/12193724/737e861485a8/jcm-14-04027-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验