Koyama Shinsuke
Department of Interdisciplinary Statistical Mathematics, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan.
Entropy (Basel). 2025 May 25;27(6):555. doi: 10.3390/e27060555.
When analyzing real-world event data, it is often the case that bin-count processes are observed instead of precise event time-stamps along a continuous timeline, owing to practical limitations in measurement accuracy. In this work, we propose a modeling framework for aggregated event data generated by multivariate Hawkes processes. The introduced model, termed the coarse-grained Hawkes process, effectively captures the second-order statistical characteristics of the bin-count representation of the Hawkes process, particularly when the bin size is large relative to the typical support of the excitation kernel. Building upon this model, we develop a method for inferring the underlying Hawkes process from bin-count observations, and demonstrate through simulation studies that the proposed approach performs comparably to, or even surpasses, existing techniques, while maintaining computational efficiency in parameter estimation.
在分析现实世界的事件数据时,由于测量精度的实际限制,通常会观察到箱计数过程,而不是沿着连续时间线的精确事件时间戳。在这项工作中,我们为多元霍克斯过程生成的聚合事件数据提出了一个建模框架。引入的模型称为粗粒度霍克斯过程,它有效地捕捉了霍克斯过程箱计数表示的二阶统计特征,特别是当箱大小相对于激发核的典型支撑较大时。基于这个模型,我们开发了一种从箱计数观测中推断潜在霍克斯过程的方法,并通过模拟研究表明,所提出的方法在参数估计中保持计算效率的同时,性能与现有技术相当,甚至超过现有技术。