Chen Xiaoyi, Finol-Urdaneta Rocio K, Chen Mo, Sykes Alex M, Gao Bingmiao, Iqbal Jamila, Adams David J, Mellick George D, Ma Linlin
Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland, Australia.
School of Environment and Science, Griffith University, Nathan, Queensland, Australia.
J Physiol. 2025 Jun;603(12):3499-3518. doi: 10.1113/JP287046. Epub 2025 Jun 25.
Parkinson's disease (PD) is a complex, progressive neurodegenerative disorder driven by multiple pathogenetic factors, including oxidative stress, mitochondria dysfunction, neuroinflammation and ion imbalance. Recent evidence highlights the significant role of potassium channels in the pathophysiology of PD. We recently identified a PD-linked genetic mutation in the KCNJ15 gene (KCNJ15), encoding the inwardly rectifying potassium channel Kir4.2, within a four-generation family with familial PD. However, the role of the Kir4.2 channel in neurodegenerative diseases remains largely unexplored. This study aimed to elucidate the impact of the KCNJ15 (Kir4.2) mutation on the biophysical and biochemical properties of Kir4.2. Employing Kir4.2-overexpressing HEK293T cells as a model, we investigated how the mutation affects the channel's functional properties, total protein expression, intracellular processing in the endoplasmic reticulum and lysosomes and plasma membrane trafficking. Patch clamp studies revealed that the Kir4.2 mutation results in loss of channel function with significant dominant-negative effects. This dysfunction is partially attributed to the substantial reduction in overall mutant channel protein expression compared to the wild-type (Kir4.2). We observed that both Kir4.2 and Kir4.2 proteins undergo glycosylation during the post-translational modification process, albeit with differing protein turnover efficiencies. Furthermore, the Kir4.2 mutant exhibits reduced stability and compromised plasma membrane trafficking capacity compared to Kir4.2. These findings suggest that the Kir4.2 mutant has unique biomolecular and biophysical characteristics distinct from the Kir4.2 channel, which potentially elucidates its role in the pathogenesis of PD. KEY POINTS: Inwardly rectifying potassium channels are increasingly recognized for their critical role in the complex pathogenesis of Parkinson's disease (PD). We previously identified a genetic mutation, Kir4.2, in the inwardly rectifying potassium channel Kir4.2, which strongly segregates with familial PD in a multi-generational pedigree. This study confirms Kir4.2 as a loss-of-function mutation with significant dominant-negative effects, impairing channel activity even in heterozygous conditions. The Kir4.2 mutation significantly reduces overall protein levels, impairs protein stability and disrupts plasma membrane trafficking in in vitro cell models.
帕金森病(PD)是一种复杂的、进行性神经退行性疾病,由多种致病因素驱动,包括氧化应激、线粒体功能障碍、神经炎症和离子失衡。最近的证据凸显了钾通道在帕金森病病理生理学中的重要作用。我们最近在一个患有家族性帕金森病的四代家族中,鉴定出KCNJ15基因(KCNJ15)存在与帕金森病相关的基因突变,该基因编码内向整流钾通道Kir4.2。然而,Kir4.2通道在神经退行性疾病中的作用在很大程度上仍未得到探索。本研究旨在阐明KCNJ15(Kir4.2)突变对Kir4.2生物物理和生化特性的影响。我们以过表达Kir4.2的HEK293T细胞为模型,研究了该突变如何影响通道的功能特性、总蛋白表达、在内质网和溶酶体中的细胞内加工以及质膜运输。膜片钳研究表明,Kir4.2突变导致通道功能丧失,并具有显著的显性负效应。这种功能障碍部分归因于与野生型(Kir4.2)相比,突变型通道蛋白总体表达大幅降低。我们观察到,Kir4.2和Kir4.2蛋白在翻译后修饰过程中都会发生糖基化,尽管蛋白质周转效率不同。此外,与Kir4.2相比,Kir4.2突变体表现出稳定性降低和质膜运输能力受损。这些发现表明,Kir4.2突变体具有与Kir4.2通道不同的独特生物分子和生物物理特征,这可能阐明了其在帕金森病发病机制中的作用。要点:内向整流钾通道在帕金森病(PD)复杂的发病机制中的关键作用日益受到认可。我们之前在内向整流钾通道Kir4.2中鉴定出一种基因突变Kir4.2,它在一个多代家系中与家族性帕金森病强烈共分离。本研究证实Kir4.2是一种功能丧失性突变,具有显著的显性负效应,即使在杂合状态下也会损害通道活性。Kir4.2突变在体外细胞模型中显著降低了总体蛋白水平,损害了蛋白质稳定性并破坏了质膜运输。