Reis Patricia M, Holec Sara Am, Ezeiruaku Chimere, Frost Matthew P, Brown Christine K, Liu Samantha L, Olson Steven H, Woerman Amanda L
Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA.
J Parkinsons Dis. 2024 Nov;14(8):1543-1558. doi: 10.3233/JPD-240296. Epub 2024 Oct 17.
Multiple system atrophy (MSA) and Parkinson's disease (PD) are caused by misfolded α-synuclein spreading throughout the central nervous system. While familial PD is linked to several α-synuclein mutations, no mutations are associated with MSA. We previously showed that the familial PD mutation E46K inhibits replication of MSA prions both and , providing key evidence to support the hypothesis that α-synuclein adopts unique strains in patients.
Here we sought to further interrogate α-synuclein misfolding to identify the structural determinants that contribute to MSA strain biology.
We engineered a panel of cell lines harbouring both PD-linked and novel mutations designed to identify key residues that facilitate α-synuclein misfolding in MSA. We also used Maestro analyses to predict the effect of each mutation on α-synuclein misfolding into one of the reported MSA cryo-electron microscopy conformations.
In many cases, our modelling accurately identified mutations that facilitated or inhibited MSA replication. However, Maestro was occasionally unable to predict the effect of a mutation, demonstrating the challenge of using computational tools to investigate intrinsically disordered proteins. Finally, we used our cellular models to determine the mechanism underlying the E46K-driven inhibition of MSA replication, finding that the E46/K80 salt bridge is necessary to support α-synuclein misfolding.
Our studies used a structure-based approach to investigate α-synuclein misfolding, resulting in the creation of a powerful panel of cell lines that can be used to interrogate MSA strain biology.
多系统萎缩(MSA)和帕金森病(PD)是由错误折叠的α-突触核蛋白在中枢神经系统中扩散引起的。虽然家族性PD与几种α-突触核蛋白突变有关,但没有突变与MSA相关。我们之前表明,家族性PD突变E46K在体内和体外均抑制MSA朊病毒的复制,为支持α-突触核蛋白在患者中采用独特毒株这一假说提供了关键证据。
在此,我们试图进一步探究α-突触核蛋白的错误折叠,以确定促成MSA毒株生物学特性的结构决定因素。
我们构建了一组携带与PD相关及新突变的细胞系,旨在识别促进MSA中α-突触核蛋白错误折叠的关键残基。我们还使用Maestro分析来预测每个突变对α-突触核蛋白错误折叠成已报道的MSA冷冻电子显微镜构象之一的影响。
在许多情况下,我们的模型准确地识别出了促进或抑制MSA复制的突变。然而,Maestro偶尔无法预测突变的影响,这表明使用计算工具研究内在无序蛋白质具有挑战性。最后,我们使用我们的细胞模型来确定E46K驱动的MSA复制抑制的潜在机制,发现E46/K80盐桥对于支持α-突触核蛋白的错误折叠是必要的。
我们的研究使用基于结构的方法来研究α-突触核蛋白的错误折叠,从而创建了一组强大的细胞系,可用于探究MSA毒株生物学特性。