Suppr超能文献

预测硬膜外相关产妇发热的机器学习算法:一项回顾性研究。

Machine learning algorithms to predict epidural-related maternal fever: a retrospective study.

作者信息

Guo Xiaohui, Zhang Haixia, Mei Hongliang

机构信息

Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.

Department of Pharmacy, Hainan Women and Children's Medical Center, Haikou, Hainan, China.

出版信息

Front Pharmacol. 2025 Jun 11;16:1614770. doi: 10.3389/fphar.2025.1614770. eCollection 2025.

Abstract

INTRODUCTION

The epidural-related maternal fever (ERMF) induced by patient-controlled epidural analgesia (PCEA) remains unpredictable. Our objective is to develop ERMF prediction models using real-world data, aiming to identify pertinent contributing factors and support obstetricians in making personalized clinical decisions.

METHODS

Women who used patient-controlled epidural analgesia between October 2021 and March 2023 at a tertiary hospital in Jiangsu Province were retrospectively documented. The primary outcome was the occurrence of maternal fever associated with epidural use. We developed six machine learning (ML) models and assessed the area under curve (AUC) for characteristics of subjects' performance, calibration curves, and decision curve analyses.

RESULTS

A total of 1,492 women were enrolled, with 24.3% experiencing ERMF (362 cases). The AUC ratios between the logistic regression (LR) model and the stochastic gradient descent (SGD) models showed statistical significance (p < 0.05), while the differences between the other models were not statistically significant. In comparison to the SVM model, the LR model exhibited better calibration (Brier score: 0.193; calibration slope: 0.715; calibration intercept: 0.062). Consequently, the LR model was selected as the prediction model. Furthermore, the LR-based nomogram identified eight significant predictors of ERMF, including neutrophil percentage, first stage of labor, amniotic fluid contamination during membrane rupture, artificial rupture of membranes, chorioamnionitis, post-analgesic antimicrobials, pre-analgesic oxytocin, post-analgesic oxytocin, and dinoprostone suppositories.

CONCLUSION

Optimally applying logistic regression models can enable rapid and straightforward identification of ERMF risk and the implementation of rational therapeutic measures, in contrast to machine learning models.

摘要

引言

患者自控硬膜外镇痛(PCEA)所致的硬膜外相关产妇发热(ERMF)仍然难以预测。我们的目标是利用真实世界数据开发ERMF预测模型,旨在识别相关影响因素,并支持产科医生做出个性化临床决策。

方法

回顾性记录2021年10月至2023年3月在江苏省一家三级医院使用患者自控硬膜外镇痛的女性患者。主要结局是与硬膜外使用相关的产妇发热情况。我们开发了六种机器学习(ML)模型,并评估了受试者表现特征、校准曲线和决策曲线分析的曲线下面积(AUC)。

结果

共纳入1492名女性,其中24.3%发生ERMF(362例)。逻辑回归(LR)模型与随机梯度下降(SGD)模型之间的AUC比值具有统计学意义(p<0.05),而其他模型之间的差异无统计学意义。与支持向量机(SVM)模型相比,LR模型表现出更好的校准效果(Brier评分:0.193;校准斜率:0.715;校准截距:0.062)。因此,LR模型被选为预测模型。此外,基于LR的列线图确定了ERMF的八个重要预测因素,包括中性粒细胞百分比、第一产程、破膜时羊水污染、人工破膜、绒毛膜羊膜炎、镇痛后使用抗菌药物、镇痛前使用缩宫素、镇痛后使用缩宫素和地诺前列酮栓。

结论

与机器学习模型相比,优化应用逻辑回归模型能够快速、直接地识别ERMF风险并实施合理的治疗措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2197/12187650/0124b746c29c/fphar-16-1614770-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验