Cao Dingding, Xiang Lirong, Li Ziling, Wei Neng, Wang Qingfeng
Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China.
College of Life Sciences, Hubei University, Wuhan, China.
Front Plant Sci. 2025 Jun 3;16:1599564. doi: 10.3389/fpls.2025.1599564. eCollection 2025.
The increasing global soil salinization has accelerated research on seawater irrigation agriculture. Developing wild vegetables through seawater irrigation could establish foundational strategies for utilizing island vegetable germplasm resources.
This study investigated two distinct leaf-shaped individuals (S and Y) of wild () through hydroponic experiments with diluted seawater during seedling stage. Physiological and morphological assessments revealed that Y exhibited superior seawater tolerance compared to S. Tissue-specific -plant transcriptome analysis identified key metabolic pathways and regulatory genes in roots, stems, and leaves.
Differential gene expression analysis showed tissue-specific enrichment patterns: leaves predominantly enriched light-harvesting complex (LHC) genes in photosynthesis pathways; stems exhibited upregulation in cutin, suberin, and wax biosynthesis pathways; while roots showed activation of nitrogen metabolism pathways.
Based on the data from transcriptomics, we infered that the key salt-tolerant candidate genes include: (1) leaf-specific LHC genes enhancing photosynthetic efficiency; (2) stem-expressed wax biosynthesis gene aldehyde decarbonylase CER1, and cytochrome P450 family members fatty acid omega-hydroxylase CYP86A4S and cytochrome P450 family 77 subfamily A (CYP77A); and (3) root-specific nitrogen metabolism regulators (nitrate reductase (NR), nitrate/nitrite transporter 2 (NRT2), and nitrite reductase (NirA). This study provides the comprehensive tissue-specific transcriptome profile of wild under seawater irrigation, predicting crucial metabolic pathways and candidate genes that might enhance seawater tolerance. Our findings establish a valuable reference for salt tolerance research in wild vegetables and offer potential genetic targets for improving crop resilience in saline-affected ecosystems.
全球土壤盐渍化加剧,加速了海水灌溉农业的研究。通过海水灌溉开发野生蔬菜可为利用海岛蔬菜种质资源奠定基础策略。
本研究在苗期通过用稀释海水进行水培实验,对野生(此处原文缺失具体植物名称)的两个不同叶形个体(S和Y)进行了调查。生理和形态学评估表明,与S相比,Y表现出更强的耐海水能力。组织特异性的-植物转录组分析确定了根、茎和叶中的关键代谢途径和调控基因。
差异基因表达分析显示出组织特异性的富集模式:叶片主要富集光合作用途径中的光捕获复合体(LHC)基因;茎在角质、木栓质和蜡生物合成途径中上调;而根则显示出氮代谢途径的激活。
基于转录组学数据,我们推断关键的耐盐候选基因包括:(1)叶片特异性的LHC基因,可提高光合效率;(2)茎表达的蜡生物合成基因醛脱羰酶CER1、细胞色素P450家族成员脂肪酸ω-羟化酶CYP86A4S和细胞色素P450家族77亚家族A(CYP77A);以及(3)根特异性的氮代谢调节因子(硝酸还原酶(NR)、硝酸盐/亚硝酸盐转运蛋白2(NRT2)和亚硝酸还原酶(NirA)。本研究提供了海水灌溉条件下野生(此处原文缺失具体植物名称)全面的组织特异性转录组图谱,预测了可能增强海水耐受性的关键代谢途径和候选基因。我们的研究结果为野生蔬菜的耐盐性研究建立了有价值的参考,并为提高受盐影响生态系统中作物的抗逆性提供了潜在的遗传靶点。