Alasiry Areej, Sampedro Gabriel Avelino, Almadhor Ahmad, Juanatas Roben A, Alsubai Shtwai, Karovic Vincent
College of Computer Science, King Khalid University, Abha, Saudi Arabia.
Department of Computer Science, University of the Philippines Diliman, Quezon City, Philippines.
PeerJ Comput Sci. 2025 Apr 22;11:e2765. doi: 10.7717/peerj-cs.2765. eCollection 2025.
Epilepsy, often associated with neurodegenerative disorders following brain strokes, manifests as abnormal electrical activity bursts in the cerebral cortex, disrupting regular brain function. Electroencephalogram (EEG) recordings capture these distinctive brain signals, offering crucial insights into seizure detection and management. This study presents a novel approach leveraging a graph neural network (GNN) model with a heterogeneous graph representation to detect epileptic seizures from EEG data. Utilizing the well-established CHB-MIT EEG dataset for training and evaluation, the proposed method includes preprocessing steps such as signal segmentation, resampling, label encoding, normalization, and exploratory data analysis. We employed a standard train-test split with stratified sampling to ensure class distribution and reduce bias. Experimental comparisons with long short-term memory (LSTM) and recurrent neural network (RNN) models highlight the GNN's superior performance, achieving a classification accuracy of 98.0% and demonstrating incremental improvements in precision and F1-score. These findings emphasize the efficacy of GNN in capturing spatial and temporal dependencies within EEG data, surpassing conventional deep learning techniques. Furthermore, the study highlights the model's interpretability, which is essential for clinical decision-making. By advancing EEG-based seizure prediction methods, this research offers a robust framework for enhancing patient outcomes in epilepsy management while addressing the limitations of existing approaches.
癫痫常与中风后的神经退行性疾病相关,表现为大脑皮层异常电活动突发,扰乱正常脑功能。脑电图(EEG)记录捕捉这些独特的脑信号,为癫痫发作的检测和管理提供关键见解。本研究提出一种新颖方法,利用具有异构图表示的图神经网络(GNN)模型从EEG数据中检测癫痫发作。利用成熟的CHB-MIT EEG数据集进行训练和评估,所提出的方法包括信号分割、重采样、标签编码、归一化和探索性数据分析等预处理步骤。我们采用标准的训练-测试分割并进行分层采样,以确保类别分布并减少偏差。与长短期记忆(LSTM)和递归神经网络(RNN)模型的实验比较突出了GNN的卓越性能,实现了98.0%的分类准确率,并在精确率和F1分数上有逐步提升。这些发现强调了GNN在捕捉EEG数据中的空间和时间依赖性方面的有效性,超越了传统深度学习技术。此外,该研究突出了模型的可解释性,这对临床决策至关重要。通过推进基于EEG的癫痫发作预测方法,本研究提供了一个强大的框架,以改善癫痫管理中的患者预后,同时解决现有方法的局限性。