Department of Neurosciences, Université de Montréal, Montréal, Qc, Canada.
Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Qc, Canada.
Sci Rep. 2023 Aug 4;13(1):12650. doi: 10.1038/s41598-023-39799-8.
Predicting seizure recurrence risk is critical to the diagnosis and management of epilepsy. Routine electroencephalography (EEG) is a cornerstone of the estimation of seizure recurrence risk. However, EEG interpretation relies on the visual identification of interictal epileptiform discharges (IEDs) by neurologists, with limited sensitivity. Automated processing of EEG could increase its diagnostic yield and accessibility. The main objective was to develop a prediction model based on automated EEG processing to predict one-year seizure recurrence in patients undergoing routine EEG. We retrospectively selected a consecutive cohort of 517 patients undergoing routine EEG at our institution (training set) and a separate, temporally shifted cohort of 261 patients (testing set). We developed an automated processing pipeline to extract linear and non-linear features from the EEGs. We trained machine learning algorithms on multichannel EEG segments to predict one-year seizure recurrence. We evaluated the impact of IEDs and clinical confounders on performances and validated the performances on the testing set. The receiver operating characteristic area-under-the-curve for seizure recurrence after EEG in the testing set was 0.63 (95% CI 0.55-0.71). Predictions were still significantly above chance in EEGs with no IEDs. Our findings suggest that there are changes other than IEDs in the EEG signal embodying seizure propensity.
预测癫痫发作的复发风险对于癫痫的诊断和管理至关重要。常规脑电图(EEG)是评估癫痫发作复发风险的基石。然而,EEG 的解释依赖于神经科医生对发作间期癫痫样放电(IEDs)的视觉识别,其敏感性有限。EEG 的自动处理可以提高其诊断效果和可及性。主要目的是开发一种基于自动 EEG 处理的预测模型,以预测接受常规 EEG 的患者一年内的癫痫发作复发情况。我们回顾性地选择了在我院进行常规 EEG 的连续 517 名患者的队列(训练集)和另一个时间错开的 261 名患者的队列(测试集)。我们开发了一个自动处理管道,从 EEG 中提取线性和非线性特征。我们在多通道 EEG 片段上训练机器学习算法来预测一年的癫痫发作复发。我们评估了 IED 和临床混杂因素对性能的影响,并在测试集上验证了性能。测试集中 EEG 后癫痫发作的接收者操作特征曲线下面积为 0.63(95%置信区间 0.55-0.71)。在没有 IED 的 EEG 中,预测仍然明显高于随机。我们的研究结果表明,在 EEG 信号中除了 IED 之外,还有其他与癫痫倾向相关的变化。