Suppr超能文献

DGCFNet:用于遥感图像语义分割的双全局上下文融合网络

DGCFNet: Dual Global Context Fusion Network for remote sensing image semantic segmentation.

作者信息

Liao Yuan, Zhou Tongchi, Li Lu, Li Jinming, Shen Jiuhao, Hamdulla Askar

机构信息

School of Information and Communication Engineering, Zhongyuan University of Technology, Zhengzhou, China.

School of Integrated Circuits, Zhongyuan University of Technology, Zhengzhou, China.

出版信息

PeerJ Comput Sci. 2025 Mar 27;11:e2786. doi: 10.7717/peerj-cs.2786. eCollection 2025.

Abstract

The semantic segmentation task of remote sensing images often faces various challenges such as complex backgrounds, high inter-class similarity, and significant differences in intra-class visual attributes. Therefore, segmentation models need to capture both rich local information and long-distance contextual information to overcome these challenges. Although convolutional neural networks (CNNs) have strong capabilities in extracting local information, they are limited in establishing long-range dependencies due to the inherent limitations of convolution. While Transformer can extract long-range contextual information through multi-head self attention mechanism, which has significant advantages in capturing global feature dependencies. To achieve high-precision semantic segmentation of remote sensing images, this article proposes a novel remote sensing image semantic segmentation network, named the Dual Global Context Fusion Network (DGCFNet), which is based on an encoder-decoder structure and integrates the advantages of CNN in capturing local information and Transformer in establishing remote contextual information. Specifically, to further enhance the ability of Transformer in modeling global context, a dual-branch global extraction module is proposed, in which the global compensation branch can not only supplement global information but also preserve local information. In addition, to increase the attention to salient regions, a cross-level information interaction module is adopted to enhance the correlation between features at different levels. Finally, to optimize the continuity and consistency of segmentation results, a feature interaction guided module is used to adaptively fuse information from intra layer and inter layer. Extensive experiments on the Vaihingen, Potsdam, and BLU datasets have shown that the proposed DGCFNet method can achieve better segmentation performance, with mIoU reaching 82.20%, 83.84% and 68.87%, respectively.

摘要

遥感图像的语义分割任务常常面临各种挑战,如背景复杂、类间相似度高以及类内视觉属性差异显著。因此,分割模型需要同时捕捉丰富的局部信息和远距离上下文信息,以克服这些挑战。虽然卷积神经网络(CNN)在提取局部信息方面具有强大能力,但由于卷积的固有局限性,它们在建立长距离依赖关系方面存在限制。而Transformer可以通过多头自注意力机制提取远距离上下文信息,这在捕捉全局特征依赖关系方面具有显著优势。为了实现遥感图像的高精度语义分割,本文提出了一种新颖的遥感图像语义分割网络,名为双全局上下文融合网络(DGCFNet),它基于编码器-解码器结构,融合了CNN在捕捉局部信息和Transformer在建立远距离上下文信息方面的优势。具体而言,为了进一步增强Transformer在全局上下文建模方面的能力,提出了一个双分支全局提取模块,其中全局补偿分支不仅可以补充全局信息,还能保留局部信息。此外,为了增加对显著区域的关注,采用了一个跨层信息交互模块来增强不同层次特征之间的相关性。最后,为了优化分割结果的连续性和一致性,使用了一个特征交互引导模块来自适应地融合层内和层间的信息。在Vaihingen、Potsdam和BLU数据集上进行的大量实验表明,所提出的DGCFNet方法能够取得更好的分割性能,mIoU分别达到82.20%、83.84%和68.87%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a97a/12190385/98cb1c3054e5/peerj-cs-11-2786-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验