Hou Ronghao, Liu Dongjie, Jin Xiaobo, Weng Jian, Geng Guanggang
School for Cyberspace Security, Jinan University, Guangzhou, Guangdong, China.
Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China.
PeerJ Comput Sci. 2025 Jun 13;11:e2946. doi: 10.7717/peerj-cs.2946. eCollection 2025.
As computers are widely used in people's work and daily lives, malware has become an increasing threat to network security. Although researchers have introduced traditional machine learning and deep learning methods to conduct extensive research on functions in malware detection, these methods have largely ignored the analysis of function parameters and functional dependencies. To address these limitations, we propose a new malware detection method. Specifically, we first design a parameter encoder to convert various types of function parameters into feature vectors, and then discretize various parameter features through clustering methods to enhance the representation of API encoding. Additionally, we design a deep neural network to capture functional dependencies, enabling the generation of robust semantic representations of function sequences. Experiments on a large-scale malware detection dataset demonstrate that our method outperforms other techniques, achieving 98.62% accuracy and a 98.40% F1-score. Furthermore, the results of ablation experiments show the important role of function parameters and functional dependencies in malware detection.
随着计算机在人们的工作和日常生活中广泛使用,恶意软件已对网络安全构成日益严重的威胁。尽管研究人员已引入传统机器学习和深度学习方法对恶意软件检测中的功能进行广泛研究,但这些方法在很大程度上忽略了对函数参数和功能依赖关系的分析。为解决这些局限性,我们提出一种新的恶意软件检测方法。具体而言,我们首先设计一个参数编码器,将各种类型的函数参数转换为特征向量,然后通过聚类方法对各种参数特征进行离散化,以增强API编码的表示。此外,我们设计一个深度神经网络来捕获功能依赖关系,从而能够生成功能序列的强大语义表示。在大规模恶意软件检测数据集上的实验表明,我们的方法优于其他技术,准确率达到98.62%,F1分数达到98.40%。此外,消融实验结果表明函数参数和功能依赖关系在恶意软件检测中的重要作用。